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Intrinsic, Dialogic, and Impact Measures of Success for Explainable AI
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Abstract
This paper presents a brief overview of require-
ments for development and evaluation of human
centred explainable systems. We propose three per-
spectives on evaluation models for explainable AI
that include intrinsic measures, dialogic measures
and impact measures. The paper outlines these dif-
ferent perspectives and looks at how the separa-
tion might be used for explanation evaluation bench
marking and integration into design and develop-
ment. We propose several avenues for future work.

1 Explanations
Explanations are foundational to social interaction [Lom-
brozo, 2006], and numerous different approaches to achiev-
ing explainability have been proposed recently [Adadi and
Berrada, 2018; Arrieta et al., 2019; Doran et al., 2017].

Criticisms of current research trends include that “ac-
counts of explanation typically define explanation (the prod-
uct) rather than explaining (the process)” [Edwards et al.,
2019]. Another criticism is that explanations are currently
largely seen as a relatively uniform and definable concept,
and even systems that take user goals with explanation into
account treat it largely on the system side of development [Bi-
ran and Cotton, 2017]. Despite this, a human centred [Ehsan
and Riedl, 2020] perspective on explanation in artificial intel-
ligence is not new [Shortliffe, 1976; Swartout, 1983; Schank,
1986; Leake, 1992, 1995; Mao and Benbasat, 2000]. For ex-
ample, Gregor and Benbasat [1999] point out that different
user groups have different explanation needs.

We have earlier construed contextualised explanations
based on user goals [Sørmo et al., 2005]. This has been
used to integrate explanatory needs in the system design pro-
cess [Roth-Berghofer and Cassens, 2005; Cassens and Kofod-
Petersen, 2007]. However, we have represented explanation
as a static object rather than a dialogic process. This includes
the ability of the technical system to make use of explanations
as well, at least as part of the theoretical model, even if not in
practical applications.

In our understanding, both human and non-human actors
in heterogeneous socio-technical systems (or socio-cognitive,
[Noriega et al., 2015]) can be senders and receivers of expla-
nations [Cassens and Wegener, 2019]. For example, a human

should be able to “explain away” recommendations made by a
diagnostic system in order to enhance the future performance.
While we currently focus on the opposite situation, e.g. an
artificial actor explaining its choice of recommendations to
the human user, frameworks for designing explanation-aware
systems should be able to account for different flows of ex-
planations, at least in principle and by extension.

In order to distinguish this from views that see the machine
as only the explainer, not the explainee, we make use of the
established term explanation awareness [Roth-Berghofer et
al., 2007; Roth-Berghofer and Richter, 2008]. Our working
definition is as follows:

• Internal View: Explanation as part of the reasoning
process itself.

– Example: a recommender system can use domain
knowledge to explain the absence or variation of
feature values, e.g. relations between countries

• External View: giving explanations of the found solu-
tion, its application, or the reasoning process to the other
actors

– Example: the user tells said recommender system
why he chooses an apartment in Norway despite
the system suggesting one in Sweden

Semiotics and philosophy as well as the human and social
sciences provide a rich basis for applications in explainable
AI [Miller, 2018]. There is sufficient empirical and theoreti-
cal evidence that explanations are generated, communicated,
understood and used in ways that are:

• Dialogic, as suggested e.g. by Leake Leake [1995],

• Contextualised, as required by e.g. Fraassen van
Fraassen [1980], comprised of

– Context Awareness (knowing the situation the sys-
tem is in) and

– Context Sensitivity (acting according to such situ-
ation) Kofod-Petersen and Aamodt [2006]; Kofod-
Petersen and Cassens [2011]

• Multimodal, as argued for by e.g. Halliday Halliday
[1978] and being

• Construed by user interest, as noted by e.g. Achinstein
Achinstein [1983].
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Given these foundations, can a semiotic model of explanation
as a form of multi-modal dialogic language behaviour in con-
text be used to generate contextually appropriate explanations
by computational systems? There is an extensive body of re-
search focusing on generating and using explanations in AI.
Currently, what is lacking is:

1. A theory of the dialogic process rather than a monologic
product

2. A cohesive theory of explanation that is:
• contextually appropriate (e.g. fitting people, topic,

mode and place),
• semantically appropriate (e.g. recognised as an ex-

planation)
• lexicogrammatically optimal (best possible multi-

modal realisation)
3. A framework for integrating explanatory capabilities in

the whole software development life-cycle, from re-
quirements elicitation over design and implementation
through to its use

4. A framework for evaluation measures.

We will focus on the last aspect in the remainder of this pa-
per. Research in particular when it comes to measuring the
actual effectiveness and efficiency of explanations given to
users still seems fragmented. We propose to measure explain-
ability along three lines of inquiry. Intrinsic measures deal
with the question of whether the system at hand can gener-
ate explanations at all. Dialogic measures look at whether
the system’s output is seen as an explanation by the users.
Finally, impact measures ask whether the explanation gen-
erated is of any use. These questions should help to elicit
and formalise requirements for explanations as well as find
ways to evaluate solutions that are operationalised sufficiently
to enable making claims of explainability that can be tested
against and to further comparisons between systems and iter-
ations of systems.

Explanations are needed during the whole life cycle of ap-
plications, from initial requirements elicitation over design
and development processes to using the final system. There-
fore, it makes sense to look at frameworks for measuring ef-
ficiency and effectiveness of explanations in the context of
whole development and life cycle management processes.
While quality measurements for explanation could eventu-
ally enable a final system score (for benchmarking purposes
[Zhan et al., 2019]), development is a cycle and it is con-
textual, and the goal is to be able to build “better” systems
through “better” development processes, where explanatory
success is part of success metrics. Given existing require-
ments for transparency, such perspective on evaluating expla-
nations can also be part of a regulatory framework for ethical
AI [Cath, 2018; Coeckelbergh, 2020; Erdélyi and Goldsmith,
2018].

2 Evaluations
Within HCI, a plethora of different instantiations of hu-
man centred development processes exist (e.g. [Beyer
and Holtzblatt, 1997; Carroll, 2000; Cooper et al., 2014;

De Ruyter and Aarts, 2010; Holtzblatt and Beyer, 2016], to
name a few). We should consider principles and methods
for (designing and evaluating) explainability as additions to
existing tool kits, agnostic to their use in established design
processes whenever possible (limited by different ontological
commitments).

Evaluation is central to Human-Computer Interaction, or
rather: evaluations are central since they typically form a cy-
cle and cover a system at various stages. While (formative
and summative) evaluations are a cornerstone for human cen-
tred design, “it is far from being a solved problem” [MacDon-
ald and Atwood, 2013]. We are generally in need for evalu-
ation processes that are suited for emerging types of applica-
tions [Poppe et al., 2007] and for sustainable and responsible
systems development [Remy et al., 2018].

But even if current (usability) evaluation methods [Dumas
and Salzman, 2006] may ultimately fall short in the con-
text of XAI, they can at least inform first iterations of eval-
uation standards. In particular when used in combination
with theories and models from other areas, such as linguistics
[Cassens and Wegener, 2008; Halliday, 1978; Wegener et al.,
2008], psychology [Kaptelinin, 1996], the cognitive sciences
[Keil and Wilson, 2000], or philosophy [Achinstein, 1983;
van Fraassen, 1980].

In this short paper, we cannot explore these contributions
in detail, but we will briefly outline a tripartite model for cap-
turing explanatory effectiveness that includes:

• Intrinsic measures: measures that pertain to the ability
of a system to generate explanations.
Can the system generate explanations?

• Dialogic measures: measures that pertain to interaction
between the system and its users.
Does the system’s output work as an explanation for its
users?

• Impact measures: measures that pertain to the poten-
tial, anticipated or actual impact of explanations.
Is the explanation generated of any use?

We have separated these measures because each of these
three types of measures has different methods for testing and
they cover distinct aspects of what “explanatory success” can
mean. It is only by combining these different perspectives
that we can get a full picture of the explanatory performance
of a system and the explanations that are a part of that sys-
tem. While we can think of more perspectives, it is important
to keep in mind that quality measures have to have a well
defined scope and they need to be, indeed, measurable [Car-
valho et al., 2017]. Furthermore, for them to be able to im-
prove processes in practice, they need to be sufficiently sim-
ple to apply.

2.1 Intrinsic Measures
These measure the ability of the system to generate explana-
tions, both generally for the given context of use, but specifi-
cally the transparency and interpretability of the system itself
or of aspects of the system such as ML models and data used
as well as algorithmic and other design choices.
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If a system or parts of a system are not transparent then it
is unlikely to perform well on either dialogic or impact mea-
sures. We can think of intrinsic measures as a baseline for
explainable AI – it is a necessary, but not sufficient condition.
From a design process perspective, we will need to look at
which components are necessary for explanation generation
[Roth-Berghofer and Cassens, 2005]. Evaluating, we might
explore the structure, modality and semantic characteristics
of the different explanations to ensure that they are optimised
for the situation. There are different specific methods that
might be useful for intrinsic measures.

2.2 Dialogic Measures
Here we look at the question of whether that which has been
generated actually works as an explanation to the user, in vari-
ous conditions, situations and contexts. Under investigation is
the shared semiotic process of explanation generator and ex-
planation consumer. Different methods are going to be useful
for dialogic measures including user studies, reaction studies,
experimental studies and qualitative and quantitative meth-
ods in general. Explanations are inherently dialogic, so we
are always going to want to know who is requesting the ex-
planation, who is providing the explanation and how and why
they are providing it. Tracking the exchange of information
itself is a way to evaluate because it lets us see the reaction to
the explanation.

Trustworthy AI could be an outcome of systems that score
highly on dialogic measures. This does not mean that trust-
worthy systems will score well on impact measures, indeed,
human and non-human agents are quite prepared to trust a
system that may have negative impacts on their wellbeing.
Trust can be engendered through a dialogically well perform-
ing malicious system and this is what makes impact measures
so essential.

2.3 Impact Measures
Impact measures look at whether providing explanations of-
fers benefits over the use of the system itself. These can be
used both on an individual level and for larger systems.

For example, on the individual level, we might consider
an adaptive learning system that offers explanations to fur-
ther the learning goal [Sørmo et al., 2005] a user might have.
While dialogic measures can be used to evaluate whether such
an explanation can function as an explanation to the student,
it would remain unclear whether the explanation did actually
improve learning outcomes.

These measures also look at the impact that the system can
have in the world. How can it impact decisions, diagnoses, le-
gal and access outcomes? The impact measures examine the
potential, anticipated or actual impact of the system and the
ability of the system to explain these repercussions to users
in context. Here the concept of contextual AI is important
because as Ehsan and Riedl argue, ”if we ignore the socially
situated nature of our technical systems, we will only get a
partial and unsatisfying picture” [Ehsan and Riedl, 2020]. A
good model of context is crucial for evaluating explanatory
success [Kofod-Petersen and Cassens, 2007; Wegener et al.,
2008]. Ethical AI would be the outcome of a system that
scores highly on impact measures. We would of course aim

for beneficial and equitable AI, but ethical is at least a good
baseline outcome. Here we might expect to see methods such
as impact studies and hypothetical, scenario and risk mod-
elling. It would be beneficial to know what the anticipated
consequences of the explanation are for everyone involved.

3 Related Work
Mohseni et al. [2018] argue that the interdisciplinary nature
of explainable artificial intelligence (XAI) “poses challenges
for identifying appropriate design and evaluation methodol-
ogy and consolidating knowledge across efforts”. At the same
time, this interdisciplinary approach is essential to the success
of XAI. We view our suggestion as a way to complement, fur-
ther consolidate, and operationalise their classification sys-
tem for different goals in XAI.

Hoffman et al. [2018] propose a process model of explain-
ing and suggest measures that are applicable in the differ-
ent phases of their conceptual model. This compliments our
(more abstract) notions of dialogic and (to a lesser degree)
impact measures, whereas we see our notion of intrinsic mea-
sures as a prerequisite for their model. Both models can be
systematically combined, depending on the need for gran-
ularity and aspects covered. Mueller et al. [2021] present
some helpful higher-level psychological considerations that
can serve as general templates for effective explanations.

Sokol and Flach [2020] introduce fact sheets with an ex-
tensive list of properties for different explanatory methods.
This is complimentary to our approach and could be used to
select methods supporting the measures chosen. A survey by
Carvalho et al. [2019] on interpretability in machine learning
is orthogonal to our model, with their results being useful for
operationalisation of the intrinsic (e.g. their comparison of
different methods) and the dialogic measures (e.g. the notion
of explanation properties).

4 Conclusion
We propose a tripartite perspective on explanation in intelli-
gent systems that aligns with (iterative and contextual) design
and development processes of systems such that there is space
for formative and summative evaluations. While it enables a
final system score (which we propose for benchmarking pur-
poses [Zhan et al., 2019]), development is a cycle and it is
contextual, and the goal is to be able to build “better” sys-
tems, where explanatory success is part of success metrics.

We have previously discussed the potential for Ambient In-
telligence to be useful for creating explainable AI [Cassens
and Wegener, 2019], particularly on the architecture level and
with regard to capabilities subsumed [De Ruyter and Aarts,
2010]. We propose that the core characteristics and general
architecture of ambient intelligent systems make them a good
framework for developing XAI and that AmI systems them-
selves have the potential to become explanatory agents that
can be mediators between humans and other systems. The
concept of mediating explanatory instances has also been ex-
plored in the context of virtual explanatory agents [Weitz et
al., 2020] or as a user-specific “memory” of explanations
[Chaput et al., 2021].
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Development of such mediators, concentrating explanatory
capabilities in specialised agents that are contextually embed-
ded in our surroundings and have the potential for person-
alisation and anticipatory interaction, could greatly benefit
from a cohesive framework for measuring explanatory suc-
cess from different perspectives.
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Molina, Richard Benjamins, Raja Chatila, and Francisco
Herrera. Explainable artificial intelligence (xai): Con-
cepts, taxonomies, opportunities and challenges toward
responsible ai. arXiv preprint: 1910.10045, 2019.

Hugh Beyer and Karen Holtzblatt. Contextual design: defin-
ing customer-centered systems. Elsevier, 1997.

Or Biran and Courtenay Cotton. Explanation and justification
in machine learning: A survey. In IJCAI-17 Workshop on
Explainable AI (XAI), 2017.

John M Carroll. Making use: scenario-based design of
human-computer interactions. MIT press, 2000.

Rainara Maia Carvalho, Rossana Maria de Castro Andrade,
Káthia Marçal de Oliveira, Ismayle de Sousa Santos, and
Carla Ilane Moreira Bezerra. Quality characteristics and
measures for human–computer interaction evaluation in
ubiquitous systems. Software Quality Journal, 25(3):743–
795, 2017.

Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Car-
doso. Machine learning interpretability: A survey on meth-
ods and metrics. Electronics, 8(8):832, 2019.

Jörg Cassens and Anders Kofod-Petersen. Explanations and
case-based reasoning in ambient intelligent systems. In
David C. Wilson and Deepak Khemani, editors, ICCBR-07
Workshop Proceedings, pages 167–176, Belfast, Northern
Ireland, 2007.

Jörg Cassens and Rebekah Wegener. Making use of abstract
concepts – systemic-functional linguistics and ambient in-
telligence. In Max Bramer, editor, Artificial Intelligence
in Theory and Practice II – IFIP 20th World Computer
Congress, IFIP AI Stream, volume 276 of IFIP, pages 205–
214, Milano, Italy, 2008. Springer.

Jörg Cassens and Rebekah Wegener. Ambient explanations:
Ambient intelligence and explainable ai. In Ioannis Chatzi-
giannakis, Boris De Ruyter, and Irene Mavrommati, edi-
tors, Proceedings of AmI 2019 – European Conference on
Ambient Intelligence, volume LNCS, Rome, Italy, Novem-
ber 2019. Springer.

Corinne Cath. Governing artificial intelligence: ethical, legal
and technical opportunities and challenges, 2018.
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Abstract

EXplainable Artificial Intelligence (XAI) has re-
cently become a very active domain, mainly due
to the extensive development of black-box mod-
els such as neural networks. Recent XAI objec-
tives have been defined in the state-of-the-art, for
which specific approaches have been proposed. Im-
plicit links can be found between XAI and other
domains, especially related to knowledge and neu-
ral networks. We here aim to highlight these im-
plicit links. We present a narrative review of re-
search works in two domains: (i) Knowledge do-
main with focus on Knowledge Discovery and Rep-
resentation, and (ii) Representation Learning. We
discuss the similarity and joining points between
these domains and XAI. We conclude that, in or-
der to make black-boxes more transparent, XAI ap-
proaches should be more inspired and take advan-
tage of past and recent works in Knowledge and
Representation Learning domains. Through this
paper, we offer an entry point to the domain of XAI
for both multidisciplinary researchers and special-
ists in AI, as well for AI knowledgeable users.

Keywords: XAI, Knowledge Discovery, Knowledge rep-
resentation, Representation learning, State representation
learning, Manifold representation learning, Multi-view rep-
resentation learning, Network representation learning

1 Introduction: XAI
During the last few years, eXplainable Artificial Intelli-
gence (XAI), has become a very active domain1 facing the
high development of black-box models, such as neural net-
works [Guidotti et al., 2018]. A new generation of XAI ap-
proaches have been proposed, for which several new concepts
and terms are specific to application domains, data types or
modeling. Application domains of XAI are multiple: ma-

∗Contact Author
1We remind that Artificial Intelligence models with explanation

goals have been questioned and investigated a long time ago such
as in [Shortliffe, 1974]. However, the term XAI has been recently
proposed.

chine learning, robotics, multi-agent systems, computer vi-
sion, Knowledge Representation and Reasoning, etc.

[Barredo Arrieta et al., 2020] defined “Given an audi-
ence, an explainable Artificial Intelligence is the one that
produces details or reasons to make its functioning clear
or easy to understand”. Indeed, XAI aims to make Ar-
tificial Intelligence (AI) models more intelligible and ac-
cessible or to directly design explainable models and re-
sults [Buchanan and Shortliffe, 1984; Guidotti et al., 2018;
Barredo Arrieta et al., 2020]. When the first case arises, XAI
provides an explanation of the internal mechanisms and/or
the reasons behind the AI model behavior i.e. its function-
ing and performance: an explanation is thus an interface be-
tween the AI model to explain and the target audience [Gun-
ning, 2017]. We define an explanation as an information in
a semantically complete format, which is self-sufficient and
chosen according to the target audience regarding its knowl-
edge, its expectations and the context. Hence, the purpose
of an explanation is to clarify the cause, context and con-
sequences of described facts through a set of statements or
information [Van Fraassen, 1988].

It is important to underline that an explanation by its very
nature is contextual: it is specific to a given target audience
and also to a given context [Walton, 2004]. This makes XAI
more challenging as automatic context understanding is still
a very challenging task [Brézillon, 1999; Lim et al., 2009;
Augusto et al., 2017; Hollister et al., 2017] and no unified
way for modelling context in intelligent environments has yet
been proposed in the literature [Brenon et al., 2018]. We em-
phasize that the context (i.e users context, goal context, etc.)
is important to take into account in XAI. However, this point
is not the focus of the paper.

In the state-of-the-art, an explanation can take different for-
mats (e.g. visual, natural language, features relevance ex-
planations, etc.) and combine several representations of the
same information [Barredo Arrieta et al., 2020]. Two main
XAI techniques are proposed: (i) Ante-hoc techniques which
consist in optimizing an already transparent AI model (e.g.
linear regression, decision trees, etc.) by adding constraints
or features in order to increase transparency through met-
rics, data visualisation, etc. (ii) Post-hoc techniques that
aim to explain already built black-box AI models (mainly
deep neural networks). Among famous Post-hoc techniques:
LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee,
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2017], visual explanations, saliency mapping, etc. XAI has
recently been covered by several reviews that reveal its com-
plex and intrinsically multidisciplinary aspects from a tech-
nical, user or Human-Interaction viewpoint [Guidotti et al.,
2018; Gilpin et al., 2018; Barredo Arrieta et al., 2020; Vilone
and Longo, 2020]. As examples, we can note technical-
based reviews, as those related to reinforcement learning
[Puiutta and Veith, 2020; Heuillet et al., 2021], data-based
reviews as those related to time series [Schlegel et al., 2019;
Rojat et al., 2021] and application-based reviews related to
healthcare [Adadi and Berrada, 2020] and banking [Burgt,
2020]. Other reviews are inspired by social science, human
psychology, sociology or cognitive sciences [Miller, 2019;
Capone and Bertolaso, 2020] in order to build ethical and fair
models [Barredo Arrieta et al., 2020].

One key issue that have not been discussed in the above
cited reviews and that we would like to highlight, is the im-
portance of knowledge in XAI. As an interface between an AI
and a target audience, an explanation can be considered as an
interpreter between the AI knowledge and the human target
audience knowledge. Since knowledge domain is historical
in AI, this raises in turn important questions about the impact
of domains such as Knowledge Discovery and Representa-
tion on XAI. Furthermore, regarding black-box models and
especially neural networks, it is important to mention that in
recent papers, concepts like representation learning, knowl-
edge/latent/hidden/abstract representation, latent space, etc.
have been studied in order to tackle issues such as dimen-
sionality, running time, algorithmic complexity, etc. How-
ever, to the best of our knowledge, no explicit relation has
been defined between these concepts and XAI. We consider
that as these concepts are increasingly recurrent in the litera-
ture, with no consensual definitions across fields, it becomes,
in turn, more difficult to apprehend the XAI domain.

To address this issue, we propose a narrative review that,
contrary to the above cited literature reviews, does not re-
view XAI techniques. Our paper is a narrative review across
several domains: a literature-based review that synthesizes
technical research works related to domains that implicitly
inspire XAI works. Our goal is to bring original insights, for-
mulate new research questions and highlight promising future
directions of XAI. More precisely, in this narrative review, we
aim to address three questions. First, to centralize and clar-
ify concepts recurrently used in AI domains but not always
clear for XAI specialists. Second, to bring a new light to XAI
by making explicit the links between XAI and two other do-
mains: (i) Knowledge domain including Knowledge Discov-
ery Process (KDP) and Knowledge Representation (KR), and
(ii) Representation Learning (RL) more associated to deep
learning domain. Third, to offer an entry point to the XAI
domain for multidisciplinary or specialists in these domains.

Actually, these domains are often perceived as discon-
nected as most of the research is currently concentrated on
only one of them [Sallinger et al., 2020]. Despite this, we be-
lieve that it is important to enhance the links and the implicit
relations that can be found between them. We thus consider
that XAI has been indirectly inspired by these domains.

Figure 1 shows our vision as a schematic representation of
XAI domain and both KDP, KR and RL domains. Table 1 lists

the acronyms used. The paper is organized as follows: defi-
nitions are presented in section 2, KDP and KR in section 3,
and RL in section 4. At the end of both last sections, we
discuss the relation between the highlighted points, related
to KDP, KR, RL and XAI. Finally, in section 5, we discuss
future directions and perspectives related to XAI.

Figure 1: A schematic representation of XAI and its positioning at
the crossroads of other domains.

Acronym Research domain
XAI eXplainable Artificial Intelligence
KDP Knowledge Discovery process
KR Knowledge Representation
RL Representation Learning
SRL State Representation Learning

Table 1: Acronyms of research domains discussed in this paper.

2 Definitions
This section is dedicated to the definition of several concepts
related to Knowledge and Representation learning domains.
Several definitions are inspired from state-of-the-art works.

Definition 2.1 The raw material that represents the input
of an algorithm is called data. Data can be noisy, par-
tial/complete, un/structured and of different types [Grazzini
and Pantisano, 2015; Malhotra and Nair, 2015].

Definition 2.2 A data set is a collection of data that describes
real-word objects (such as cars, documents, animal, etc.)
through multiple properties called features [Bishop, 2006].

Definition 2.3 Once data is analyzed and correlated, it rep-
resents information. Information can be reproduced from
data and its importance depends on the context it is generated
from/for [Grazzini and Pantisano, 2015; Malhotra and Nair,
2015].

Definition 2.4 Knowledge is a set of information that is as-
sessed by a human, i.e. human adds a value and semantics
according to his/her own background and context [Grazzini
and Pantisano, 2015; Malhotra and Nair, 2015].

Definition 2.5 In the data mining domain, a “pattern is an
expression in some language describing a subset of the data
or a model applicable to the subset” [Fayyad et al., 1996].
Hence, Pattern extraction designates the process of finding
structures in data, fitting a model to data, or finding a high-
level description of a data set.
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Many data modeling approaches have been proposed in the
state-of-the-art. We can cite reinforcement learning, graph-
based approaches, neural networks, etc. We now define some
important concepts related to these approaches.

Definition 2.6 Reinforcement learning is an approach in
which an intelligent agent interacts with its environment
through trial-and-errors actions in order to reach a goal. Each
action leads to a modification of the state of the agent and the
environment and the increase or decrease of a cumulative re-
ward value. Actions are chosen according to a strategy that
is called a policy [Barto and Sutton, 1995].

Definition 2.7 A Manifold is a topological structure of n-
dimensions. For example, a one-dimensional manifold is
a curve, a two-dimensional manifold is a surface, a three-
dimensional manifold is a sphere.

Definition 2.8 A network is a collection of discrete objects
called nodes, which are connected through links: it can be
viewed as a graph with vertices and edges, both with at-
tributes/weights or not [Fletcher et al., 1991].

Definition 2.9 Neural networks are machine learning mod-
els with several architectures, that are usually structured by
one or several layers (input, hidden and output). Each layer
is composed of one or several computational units called ar-
tificial neurons - conceptually derived from biological neu-
rons [McCulloch and Pitts, 1943; Abraham, 2005]. Compu-
tational units can also be a Long Short Term Memory (well
known also as LSTM) [Hochreiter and Schmidhuber, 1997]
or Gated recurrent units [Cho et al., 2014]. A deep neu-
ral network have many hidden layers, units, and edges with
weights. Units of layer n can be all or partially connected to
units of layer n+1. Due to this inner complexity, deep neural
networks are a typical example of black-boxes.

Definition 2.10 In neural networks, an activation pattern
refers to units activation values of one of the layers. An acti-
vation pattern is a numerical vector of the size of the layer it
is associated with. A hidden pattern refers to the activation
pattern of a hidden layer.

In the literature of neural networks, concepts like latent
space and latent representation have been developed and
widely used. However, to the best of our knowledge, no
complete definitions have been clearly proposed for such con-
cepts. Due to the importance of both concepts in the rest of
this paper, we choose to formulate their definition next.

Definition 2.11 Latent space refers to the abstract multi-
dimensional space associated to each layer of a neural net-
work where the representation of the learned data is implicitly
built. Latent space contains the meaningful internal features
(definition 2.2) representations of learned data, which makes
it not directly interpretable. In a deep neural network (defini-
tion 2.9), each hidden layer, whether it has the same number
of units or not, has its own latent space. It is thus possible
to extract several implicit representations from this network.
The latent space can be used to achieve a data dimensional-
ity reduction, when the hidden layer is smaller than the in-
put layer. This is the case for example with autoencoders
and variational autoencoders [Kingma and Welling, 2014],

models that can reduce high-dimensional inputs into efficient
and representative low-dimensional representations [Roberts
et al., 2018b].

Definition 2.12 Latent or hidden representation refers to
the data representation implicitly encoded by a neural net-
work during the learning task and thus is hidden-layer-
dependant [Bengio et al., 2013]. It is a machine-readable
data representation that contains features of the original data
that have been learned by associated hidden layer. One key
property of latent space (definition 2.11) is that real-world
objects (definition 2.2) that are semantically close (e.g. cars
of different brands), will end up grouped together in one la-
tent space: their respective hidden representation in the corre-
sponding layer, will be close to each other compared to other
objects that are not semantically close (e.g. cats) [Roberts et
al., 2018a]. Thus, a latent representation is useful for pattern
analysis (definition 2.5) and for similarity detection between
objects (definition 2.2) using clustering methods.

3 Knowledge: discovery and representation
We now present two active research domains: KDP (sec-
tion 3.1) and KR (section 3.2). Then, we discuss the relation
between them and XAI in section 3.3.

3.1 Knowledge Discovery Process (KDP)
KDP is a human-centered domain that seeks useful knowl-
edge (definition 2.4) through an iterative and interactive pro-
cess that involves humans [Lenca, 2002; Cios et al., 2007].
As the domains KDP, data mining, and Knowledge Discov-
ery in Databases (referred to as KDD) are often used in a
confused way, we consider that it is important to present a
clarification about them, as follows:

• According to [Cios et al., 2007], KDP and KDD des-
ignate the same process. However, KDP can be gen-
eralized to non-databases sources of data, while KDD
emphasizes databases as a primary source of data.

• KDP and data mining are related to each other as well as
to other domains like machine learning and statistics, but
are clearly distinct. Indeed, according to [Fayyad et al.,
1996] and [Cios et al., 2007], KDP is the global process
of discovering useful knowledge from data, whereas
data mining is a particular step within the KDP process
that consists in applying algorithms to extract patterns
(definition 2.5) or to build a model that fits the data.

There is no consensus about the steps of a KDP: nine steps
in [Fayyad et al., 1996], eight steps in [Anand and Büchner,
1998], six steps in [Wirth, 2000; Cios et al., 2007] and five
steps in [Cabena et al., 1998]. However, we emphasize that
globally KDP consists of three common main steps:

1. A pre-processing step for data collection or generation,
data preparation, cleaning, curing, etc.

2. A data processing step where several techniques from
statistics/machine learning/data mining, etc. communi-
ties can be used.

3. A post-processing step for visualisation, evaluation and
validation.
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At each step, the extracted information (definition 2.3) is
usually evaluated by the human, given the context, to form
knowledge2 (definition 2.4). Thus, the target audience of
the KDP is the human: application domain experts and de-
cision makers. In addition, it is important to underline that
two mains goals of KDP are usually defined [Fayyad et al.,
1996]: (i) verification of a user hypothesis, and (ii) discov-
ery of valid and useful new knowledge that is understandable
with respect to the data (definition 2.1) from which it is de-
rived. These goals are thoroughly discussed in section 3.3.

3.2 Knowledge Representation (KR)
KR is a crucial question in AI [Malhotra and Nair, 2015].
Also known as “Knowledge Representation and Reasoning”,
KR aims at finding ways to efficiently structure specific do-
main knowledge for automated reasoning. In this way, in-
telligent machines can learn, draw inferences, make decision
and answer questions related to this knowledge [Davis et al.,
1993; Shapiro, 2006; Davis, 2015]. Thus, seen in such a way,
KR can be considered as a machine-oriented domain. The
purpose of KR is neither about storing data, nor making ac-
tions but it is about allowing “thinking by reasoning” [Davis
et al., 1993]. Consequently, KR has been a key component
for the conception of intelligent knowledge-based systems.

KR is also, according to [Malhotra and Nair, 2015], closely
related to the Knowledge retrieval in the shape of ontolo-
gies (concepts for representing, storing and accessing knowl-
edge [Guarino et al., 2009]). KR techniques have also been
widely developed and applied to semantic web [Hagedorn et
al., 2020], semantic networks [Malhotra and Nair, 2015], text
interpretation and cognitive robotics [Davis, 2015]. In addi-
tion, from a user viewpoint, KR is important during the de-
velopment of software systems in order to perform particular
tasks, as well as for broader community of cognitive science
whose goal is to constitute and organize knowledge from hu-
mans and machine perspectives [Das, 2003].

Knowledge Representation Learning (KRL)
KRL is the process of making AI algorithms model and

learn a structured representation of domain-specific knowl-
edge. As a consequence, concepts, relations between
them and their representations can be encoded in a low-
dimensional semantic space [Lin et al., 2018]. For exam-
ple, when knowledge is represented as a graph, the KRL pro-
cess allows graph embedding and preserves semantic simi-
larities [Xie et al., 2018]. Notice that the development of
deep learning algorithms and their performance on distributed
representations (i.e. representations that describe features of
the same data across layers) that reduce the computational
complexity has contributed to the emergence of several KRL
applications such as recommendation system [Zhang et al.,
2016], language modeling [Ahn et al., 2016] and question
answering [Yin et al., 2016]. We consider that KR has re-
cently become a more central domain in AI, and by extension
in XAI. This is mainly due to the development of Represen-
tation Learning in neural networks (introduced in section 4).

2Notice that recent approaches like AutoML tend to perform all
these steps automatically without user intervention [He et al., 2021]

3.3 Discussion: relation between KDP, KR and
XAI

We now discuss and highlight several links and common
points between KDP, KR and XAI. As mentioned in sec-
tions 3.1 and 3.2, KDP is a human-centered domain, whereas
KR is a machine-oriented domain. However, both domains
are complementary: in KDP, the main question is “How to
efficiently discover new or retrieve existing knowledge?”,
whereas in KR the tackled question is “How to represent the
knowledge efficiently to be able to reason on it?”.

It is important to highlight that both KDP and KR ques-
tions are also addressed and are crucial in XAI. Recall that the
objective of XAI is to make the reasons behind AI behavior
simple and accessible to a target audience regarding a given
task and context. We consider that this XAI objective can be
viewed and divided into two sub-objectives: (i) to discover
the reasons behind AI behavior - which is the same as in a
KDP problem -, (ii) to represent these reasons in a way that is
intelligible for the human target audience, but also sometimes
for an artificial one - which is the same as for a KR problem.

Let us first detail the links between KDP and XAI. In XAI,
for black-boxes like deep neural networks [Guidotti et al.,
2018; Gilpin et al., 2018], technical approaches are used to
search the behavior of AI and make it explainable by provid-
ing an explanation that can take several forms and be multi-
modal [Barredo Arrieta et al., 2020]. Explaining an AI model
is therefore very inspired by KDP. The particular point is that
in XAI, the input data (definition 2.1) is related to the black-
box AI model. This input data can be of several types, e.g. ac-
tivation patterns of hidden layers (definition 2.10), features or
representations, and require the same techniques as in KDP.

Figure 2 represents a schematic representation of the trans-
formation of data into knowledge, in KDP and XAI domains.
It clarifies the similarities between both domains regarding
the human intervention, and the role of the technical part, i.e.
data mining and explainable methods.

Let us now go into deep details about knowledge repre-
sentation in XAI. Two cases can be highlighted according to
target audience: (i) human who uses the knowledge represen-
tation to reason and understand the situation, e.g. the decision
maker and the application domain expert, depending on their
expertise, role and goals, (ii) another AI system for which the
input data is provided from a complex AI architecture.

Let us take an example in the domain of computer vision
and especially classification using deep neural networks. Re-
searchers have proposed approaches that exploit different AI
algorithms and their latent representation (definition 2.12) as
an input to the neural networks. The objective of such ap-
proaches is to perform both classification and explainability
tasks through saliency masks applied to images and text gen-
eration [LeCun et al., 2015]. This is one strategy among mul-
tiple others for the representation of knowledge in order to fa-
vor the explainability of the behavior of the initial AI model.

In addition, notice that KRL has been basically associated
with deep learning algorithms, especially with techniques like
graph representation learning [Hamilton, 2020] and concept
learning [Dolgikh, 2018], which are both studied in the XAI
domain [Xu et al., 2018; Fazi, 2020].
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Finally, it is important to highlight the importance of the
target audience in both KDP/KR and XAI domains. Actu-
ally, the role of the target audience is decisive: knowledge
is usually retrieved and shaped in order to answer a question
of a target audience related to a given task and context such
as verifying an hypothesis, inference and decision making.
Knowledge representation and content in both KDP/KR and
XAI domains are thus target and context dependant.

As a conclusion, XAI is closely related to both KDP and
KR, and future works in XAI should take advantage of recent
works in both domains, as well as older works.

Figure 2: Two schematic ways for data transformation into knowl-
edge: On the left, within a Knowledge Discovery process, and on
the right within a XAI process.

4 Representation Learning (RL)
We now present the RL domain, its importance in deep neural
networks, and RL sub-domains that are recurrent and popular.

4.1 RL introduction and definition
RL has been discussed as a key challenge related to different
machine learning domains [Dietterich et al., 2008] especially
to neural networks. As first demonstrated by [Rumelhart et
al., 1986], in neural networks, back-propagation algorithms
can generate useful internal representations of data in hidden
layers. Since then, different approaches have been proposed
in order to learn, analyze and visualize latent data represen-
tations [Gilpin et al., 2018; Guidotti et al., 2018]. Thus, RL
has become an active research domain for which the objective
is to study of latent representations in order to improve deep
neural network efficiency [Bengio et al., 2013].

RL - and synonyms like Data RL or Feature Learn-
ing [Zhong et al., 2016] - focuses on “learning representa-
tions of the data that make it easier to extract useful informa-
tion when building classifiers or other predictors” [Bengio et
al., 2013]. In other words, RL is designed to learn abstract
features that characterize data [Lesort et al., 2018].

RL algorithms can be classified into two categories: global
and local RL algorithms. While the first ones tend to pre-

serve the data global information in the learned feature space,
the second ones focus more on preserving local similarity be-
tween data during learning the new representations [Zhong
et al., 2016]. Representations are not task-specific but are
useful to machine learning algorithms to solve tasks, as well
as to humans to comprehend the behavior of these last algo-
rithms [Bengio et al., 2013]. One of the reasons that makes
RL popular is that representations express priors about the
data. The expressed priors can vary within a single learning
algorithm. Consequently, the characteristic of the priors vari-
ations leads to different RL approaches, that we classify into
two categories: problems-oriented RL and data-oriented RL.

In the following section, we first present the concept of hi-
erarchical representation in deep neural networks, a key prop-
erty of RL. Then we present examples of particular cases of
RL that are problems-oriented and data-oriented.

4.2 Hierarchical representations in deep neural
networks

One key property of the RL domain in deep neural networks
is the ability to provide both high level features and low level
features for the same learned data. Recall that a deep neu-
ral network will encode a latent representation at each hidden
layer (definitions 2.9, 2.12). Since the layer n units can be
all or partially connected to the layer n + 1 units, each layer
uses the previous layer as input. If the previous layer is a
hidden layer, then the input is already a latent representation,
i.e. an abstract feature representation that characterizes the
data. Thus, each layer extracts an abstract feature representa-
tion of the previous layer. As a result, a deep neural network
learns multiple levels of abstraction and implicitly encodes a
hierarchy of latent and abstract representations that are
built progressively, layer by layer. The layers that are close
to the input layer will encode a low-level feature representa-
tion, whereas those deeper inside the architecture will encode
a high level feature representation. In other words, the closer
the considered layer is to the output layer, the more the repre-
sentation is abstract [Bengio et al., 2013; Zhong et al., 2016;
Lesort et al., 2018], as represented in Figure 3.

Figure 3: Illustrative and schematic representation of the position of
a low level representation and a high level representation in a deep
neural network. hx refers to the xth hidden layer in the network.

It has also been shown that, in deep learning algorithms,
hidden representations tend to keep dominant information
and propagate them across hidden layers, regardless the width
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or depth increase of the deep neural networks [Nguyen et al.,
2021]. This characteristic of RL is also a key one for XAI:
by extracting and comparing the low-level and the high-level
representations of a deep architecture, we consider that it is
possible to explicit the inner mechanism of the architecture by
observing the differences between the representations. This
will be discussed further in section 5.

4.3 Problems-oriented RL approaches
Recall that the objective of RL algorithms is to learn ab-
stract features that characterize data. This objective can be
challenging according the issues that one could face such as
high dimensionnality of data or RL application to another AI
paradigm like reinforcement learning (definition 2.6). In the
following sub-sections, we describe two RL sub-domains:
Manifold RL and State RL, that have recently shown great
performances in deep learning and that deal with our core
questions. The links with XAI are also briefly discussed.

Manifold RL
Manifold RL is particularly suited for dealing with high-
dimensional data sets that are very difficult to visualize and
less intuitive. However, within such data sets, data can lo-
cally belong to a subset that can be represented by a man-
ifold. As stated in definition 2.7, a manifold is a topo-
logical structure of n-dimensions. Thus, Manifold RL cor-
responds to the learning of complex data representation in
several dimensions while preserving the topological prop-
erties of the considered manifold. We consider Manifold
RL as a non-linear dimensionality reduction approach, that
can help to discover similarities in data for which dimen-
sions have been reduced [Cayton, 2005; Bengio, 2009; Zhang
et al., 2011]. The Manifold RL domain aims at discov-
ering manifold structure hidden in high dimensional data.
It seeks to discover the intrinsic structure of a given man-
ifold. Notice that when many manifolds are considered,
we refer to this as multi-manifold RL [Lee et al., 2016;
Torki et al., 2010]. It allows to both preserve the local geo-
metric structure within distinct manifolds while ensuring the
discriminability between them [Wu et al., 2020].

When more neural networks transparency is required, the
visualisation of latent representations is essential: it allows
to develop an intuition about the distance between subsets
of data represented by their associated latent manifold rep-
resentations. Consequently, we consider that this dimension-
reduction characteristic is therefore of great practical interest
for XAI. Indeed, reducing the complexity due to the high di-
mensions can strongly contribute in understanding the inner
mechanisms of models exploiting the data, but also the role
of the data subsets on the models behaviors.

State RL (SRL)
In addition, RL can also concern domains where data are in a
low dimensional space. SRL is “is a particular type of rep-
resentation learning that aims at building a low-dimensional
and meaningful representation of a state space, by processing
high-dimensional raw observation data (e.g., learn a position
(x, y) from raw image pixels).” [Heuillet et al., 2021]. This
domain is thus particularly suited for learning features in re-
inforcement learning, robotics and control scenarios. Thus,

learning in SRL for an artificial agent is rather related to
building a latent model of the environment and the task to per-
form through interactions [Lesort et al., 2018]. In addition, it
has been shown that SRL provides three main advantages for
several research domains [Heuillet et al., 2021]:

• The learned features are of low dimensions which im-
proves speed and generalization of deep learning mod-
els [Lesort et al., 2017].

• SRL helps improving performance in some reinforce-
ment learning steps such as policy learning [Heuillet et
al., 2021].

• Learning representations of states (definition 2.6), ac-
tions or policies provide meaning to explain a reinforce-
ment learning algorithms. Indeed, SRL allows to learn
representations that capture the variation in the environ-
ment generated by the action of the agent [Lesort et al.,
2017; Heuillet et al., 2021].

It has been shown that SRL is particularly suitable to
make the behavior of an artificial agent and the reasons of
this behavior accessible for humans [Lesort et al., 2017;
Lesort et al., 2018; Heuillet et al., 2021]. Consequently, we
can consider SRL as an example of domains used for expla-
nation goals in reinforcement learning.

4.4 Data-oriented RL approaches
In RL, several approaches tackle the problem of increasing
data volumes, their heterogeneity and the multiplicity of their
sources. We can consider them as data-oriented approaches
and present two of them: the Multi-view RL and the Network
RL. We also highlight the link between RL applied to real-
world data-oriented problems and XAI domain.

Multi-view RL
In real-world applications, each object can be described by
multiple features (definition 2.2) [Xu et al., 2013]. It is
thus referred as Multi-view data. These features, also re-
ferred to as views, constitute complementary and diverse
information of the same data [Xu et al., 2018]. For ex-
ample, one information can be obtained through multiple
sources, which is the case in the application where differ-
ent people are talking about the same thing. Another ex-
ample can be an image that is described via a set of visual
features such as color, shape and textures. Multi-view RL
is thus concerned with the problem of the integration of in-
formation from multiple views and uncovers the latent struc-
ture shared by multiple views, while preserving the origi-
nal information and the global meaning [Zhu et al., 2014;
Xu et al., 2018]. It has been shown that Multi-view RL can
facilitate extracting useful information when developing pre-
diction models [Li et al., 2018] and also helps encoding con-
cepts and semantics in deep neural network [Xu et al., 2018].
Recently, Multi-view RL has been used to design an explain-
able recommendation system [Gao et al., 2019], where au-
thors claim that “it is difficult to model the relationships be-
tween high-level and low-level features since they have over-
lapping meaning”. To overcome this issue, a Multi-view
learning approach has been proposed by considering different
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levels of features as different views. The learned representa-
tion can then be a representation of different levels of features
of the input data. Accordingly, we consider that Multi-view
RL can be employed for explainability tasks.

Network RL
Network RL is a learning paradigm proposed to analyze net-
works such as graphs, and thus allows users to deeply un-
derstand the hidden features of graphs [Sun et al., 2020].
This domain aims at learning in a low-dimensional space of
network vertices (definition 2.8), while preserving the struc-
ture of the network topology, the content of the vertices and
other information as vertices attributes and links attributes.
Network RL can be considered as a dimensionality reduc-
tion technique and an intermediate step to solve a target
task [Zhang et al., 2020]. Since the information of the orig-
inal network is preserved in a new vector-based representa-
tion, conventional vector-based machine learning algorithms
can be applied. Thus, Network analysis and mining tasks be-
come easier as there is no more need to use complex algo-
rithms directly designed for graphs.

Consequently, Network RL has multiple applications such
as: vertex classification, link prediction, clustering, visualiza-
tion and recommendations [Dong et al., 2020; Zhang et al.,
2020]. Network RL approaches have been widely applied to
information networks [Sun et al., 2020; Zhang et al., 2020]
and are becoming increasingly popular for capturing complex
relationships in various real-world applications [Yang et al.,
2015; Sun et al., 2020; Zhang et al., 2020], such as social net-
works, citation networks, telecommunication networks, bio-
logical networks, recommender systems, etc.

In addition, Network RL is essential in the study of het-
erogeneous information networks (i.e. where vertices are of
different types), in order to capture semantic proximity be-
tween vertices representations [Dong et al., 2020]. Given the
high scale of some networks that can range from hundred to
billions of vertices and the heterogeneity of information, we
believe that Network RL and XAI should be considered to-
gether in order to perform efficient and explainable analytical
tasks. Also, in related applications, an in depth analysis using
XAI techniques and Network RL can help interpreting em-
pirical results and providing a deep understanding of the ap-
plied black-box model. To conclude, Network RL should be
considered as a dimensionality reduction technique whenever
graph-data structure is involved in the design of XAI.

4.5 Discussion: relation between RL and XAI
We have presented several research works in RL (Manifold
RL, State RL, Multi-view RL and Network RL) and we next
highlight common points between RL and XAI.

First, let us discuss the contribution of the hierarchical
RL on XAI modeling. Recall that while RL focuses on learn-
ing a data representation in order to get a better performance
of the AI model [Bengio et al., 2013], XAI is interested in
exploring this representation to explain the performance and
behavior of the model. This representation varies according
to the techniques used in the involved AI models (e.g. an ar-
tificial agent or a neural network). In the case of deep neural
networks models, the hierarchical level of representations is

important for XAI, as it allows to extract different types of
information that can be used in several ways:

• The study of low-level representations can help to detect
important features used by the deep network to make a
prediction. This contributes to the explanation and un-
derstanding of the deep network by determining features
involved in a particular output (i.e. a prediction).

• The study of high-level representations can help to de-
tect groups of features involved in a prediction, and how
and where a deep neural architecture deals with these
groups. This is interesting to explain relevant hidden in-
formation and their location within the architecture.

For example, a hierarchical multi-scale deep recurrent net-
work approach has been proposed for data sequences [Chung
et al., 2016]: in order to discover temporal dependencies in
data, the latent hierarchical structure in the sequences has
been exploited without using explicit boundary information.
Accordingly, we consider that the hierarchical structure of the
latent representations is an important characteristic of deep
networks in order to propose a model-specific XAI modeling.

Second, we focus now on the contribution of problems-
oriented and data-oriented RL approaches discussed above
on the explainability of AI models.

• Recall that for high-dimensional data sets, Manifold
RL allows to perform dimension reduction in the latent
space while preserving the distance or similarities be-
tween data. Consequently, one of the main advantages
is that visualisation of the data representation inside the
latent space allows to get a better intuition and under-
standing of the inner mechanisms of models.

• Recall that in reinforcement learning, SRL allows to ex-
plicit the agent state changes while performing a task in
a given environment. This is similar to the XAI objective
as it makes the behavior of an artificial agent explicit and
more intelligible for a given target audience. Also, re-
cent works have mentioned that State RL can be viewed
as a mean for XAI in reinforcement learning [Heuillet
et al., 2021]. Other works describe State RL as an ap-
proach for robotics and control scenarios that provides
easier interpretation of the variation in the environment
[Lesort et al., 2017]. Consequently, we can consider that
the goals of SRL are in line with those of XAI.

• Through the presentation of Multi-view RL and Net-
work RL in section 4.4, we have shown that real-world
applications of RL techniques that can be more specific
to a particular data type or data organisation, are also
linked to XAI. Indeed, an AI model can learn from mul-
tiple data sets of complex data representation such as
networks (e.g. social network modeling, biological net-
works). The complexity of the learned data can also im-
pact the behavior of the AI model. Consequently, this
allows us to conclude that adopting RL approaches that
take into account the type of learned data, is a way to
make AI models more explicit and explainable.

Figure 4 summarizes the above conclusions and questions
tackled throughout the section 4. Table 2 summarizes RL
domains and some examples of application domains.
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Figure 4: Questions addressed throughout the paper in section 4.
Associated reference to each example: (i) [Madumal et al., 2020],
(ii) [Torki et al., 2010], (iii) [Gao et al., 2019], (iv) [Qi et al., 2020]

Approach Non-exhaustive examples of application domain

RL
Speech recognition [Liu et al., 2020]
Object recognition [Wang et al., 2020]
NLP [Mikolov et al., 2013; Bérard et al., 2016]

State RL Robotics [Lesort et al., 2017]
Numerical artificial agent [Madumal et al., 2020]

Manifold RL Data mining [Torki et al., 2010]

Multi-view RL
Concept learning [Xu et al., 2018]
Image processing [Su et al., 2011]
Recommender systems explainability [Gao et al., 2019]

Network RL
Networks of concepts [Yang et al., 2015; Qi et al., 2020]
Identification of genes in biology [Ietswaart et al., 2021]
Community detection in social networks [Tu et al., 2018]

Table 2: A Summary of RL approaches, examples of application
domains (NLP stands for Natural language processing).

5 Discussion and conclusion
We now summarize the highlighted points presented in previ-
ous sections. We also present promising directions related to
the XAI domain. Since our paper is a multidisciplinary one at
the crossroad of several domains, we have first (in section 2)
centralized and clarified definitions of several concepts, that
could indeed seem basic and well-known to involved AI ex-
perts, but are important to bridge the discussed domains. A
special focus has been made on latent space, latent represen-
tation and hierarchical representation which are essential for
knowledge extraction in deep neural networks and thus in
XAI. To the best of our knowledge, no previous work has
established a clear definition of these concepts for XAI com-
munity. This is necessary to allow the collaboration between
the different domains necessary to build XAI. Second, we
analysed and highlighted the existence of relations between
Knowledge domains (KDP, KR), RL and XAI.

As we have shown in section 1, the goal of XAI is to con-
vey the most semantically complete explanation to a target
audience in order to answer a particular question within a
given context. This explanation should take into account two
important points: (i) the prior knowledge of the target au-
dience regarding the application context, and (ii) the techni-
cal aspects of the AI used model that provided solutions to a
specific task, and that thus contributed, due to its complex-
ity/opacity, to the emergence of the question behind the need
of XAI, i.e in short, ”What are the reasons behind the results
and/or how the AI model reaches these results?”.

We consider that XAI is technically at the crossroad of

at least two domains: (i) KDP and KR when viewed from
a human perspective, and (ii) RL that tackles implicitly the
same objectives as XAI, from a technical and algorithmic per-
spectives. KDP, KR, RL domains, while distinct, are over-
lapped. They do and should have an explicit impact on XAI
approaches:

• First, as we have previously mentioned, several XAI
approaches are indirectly inspired by the domain of
Knowledge (KDP, KR and data mining) as both tend to
express information from data. However, it is important
to recall that, in XAI the input data reflects the inter-
nal mechanisms of the AI model, its predictions, and/or
its behavior. The evolution of the Knowledge domain is
therefore an inspiration area for XAI.

• Second, the development of AI approaches and in par-
ticular of deep learning, has blurred the boundaries be-
tween KR and RL, since several KR approaches involve
RL and deep learning. In addition, recall that while RL
is interested in features modeling for algorithmic issues
(performance, dimensionality, etc.), XAI is interested in
features since it contributes to explicit the inner mecha-
nisms behind the results. This implies that KR, RL and
XAI are indeed interested in the data representation in
order to answer different but related questions. We thus
consider that, in order to make a significant progress,
XAI future works should not forget KR and RL past and
recent works as inspirations.

KDP, KR and RL have been extensively confronted with,
first, issues related to providing a data-driven explanation
to different stakeholders according to their expectations and
context, and second, issues related to biases and fairness in AI
[Nelson, 2019]. This highlights the human significant role on
data processing and bias detection in AI towards XAI. We
believe that this review is all the more topical and important
as works about the alliance between symbolic AI and con-
nectionist AI should be more and more important in the next
years3, e.g. injecting a priori knowledge into neural networks
to limit unethical AI [Goebel et al., 2018] and biases [Gor-
don and Desjardins, 1995; Leavy, 2018; Lepri et al., 2018;
Nelson, 2019]. We are convinced that very promising direc-
tions can be taken in XAI future works by taking advantage
of KDP, KR and RL development to help design ethical, un-
biased and human-centered XAI. To conclude, we point out
that other domains, not discussed in this paper, also impact
XAI directions such as cognitive psychology [Le Saux et al.,
2002], cognitive sciences for biases studies [Soleimani et al.,
2021], social sciences [Miller, 2019] and Human Machine In-
teraction field [Le Saux et al., 1999; Mueller et al., 2021;
Ehsan et al., 2021].
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Büchner. Decision support using data mining. Financial
Times Management, 1998.

[Augusto et al., 2017] J Augusto, Asier Aztiria, Dean
Kramer, and Unai Alegre. A survey on the evolution of
the notion of context-awareness. Applied Artificial Intelli-
gence, 31(7-8):613–642, 2017.

[Barredo Arrieta et al., 2020] Alejandro Barredo Arrieta,
Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Bennetot,
Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio
Gil-Lopez, Daniel Molina, Richard Benjamins, Raja
Chatila, and Francisco Herrera. Explainable artificial
intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AI. Information
Fusion, 58:82–115, 2020.

[Barto and Sutton, 1995] Andrew G Barto and Richard S
Sutton. Reinforcement learning. Handbook of brain the-
ory and neural networks, pages 804–809, 1995.

[Bengio et al., 2013] Y. Bengio, A. Courville, and P. Vin-
cent. Representation learning: A review and new perspec-
tives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

[Bengio, 2009] Yoshua Bengio. Learning deep architectures
for AI. Now Publishers Inc, 2009.

[Bérard et al., 2016] Alexandre Bérard, Christophe Servan,
Olivier Pietquin, and Laurent Besacier. Multivec: a mul-
tilingual and multilevel representation learning toolkit for
NLP. In The 10th edition of the Language Resources and
Evaluation Conference, 2016.

[Bishop, 2006] Christopher M Bishop. Pattern recognition
and machine learning. springer, 2006.

[Brenon et al., 2018] Alexis Brenon, François Portet, and
Michel Vacher. Context feature learning through deep
learning for adaptive context-aware decision making in the
home. In 2018 14th International Conference on Intelli-
gent Environments (IE), pages 32–39. IEEE, 2018.
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Abstract
The representation of the personal context is com-
plex and essential to improve the help machines can
give to humans for making sense of the world, and
the help humans can give to machines to improve
their efficiency. We aim to design a novel model
representation of the personal context and design a
learning process for better integration with machine
learning. We aim to implement these elements into
a modern system architecture focus in real-life en-
vironments. Also, we show how our proposal can
improve in specifically related work papers. Fi-
nally, we are moving forward with a better personal
context representation with an improved model, the
implementation of the learning process, and the ar-
chitectural design of these components.

1 Introduction
Every person makes sense of their personal context differ-
ently because of their different sets of personal characteris-
tics (intelligence) and behaviour (life choices). However, the
machine’s understanding of the personal context is radically
different from the user’s understanding. This limitation is due
to the limited definition of the personal context, and the lack
of tools to make sense of the personal context. For instance,
while the person you are with now can be linked to a name,
for people it has more meaning than just a name, e.g., friend
and colleague. Additionally, these meanings are not fixed,
they may change at any time, and every person can assign
additional meaning using different criteria. Thus, effective
context recognition requires a complex and dynamic repre-
sentation of the personal context and the collaboration of the
people to fill the cognitive gap of machines.

The addition of human collaboration into the context
recognition learning of machines is an important part of su-
pervised machine learning [Vapnik, 2013]. These interactions
bring new challenges to the implementation of machine learn-
ing algorithms. For instance, humans can be defined as the
expert of the supervised algorithms, interacting in an offline
fashion by annotating sensor data [Webb, 2003], or the inter-
action can be directly online, as active learning [Settles, 2009;

∗Contact Author

Hoque and Stankovic, 2012; Hossain et al., 2017]. The hu-
man collaboration is important when we are moving into real-
life scenarios [Kwapisz et al., 2011].

Other challenges of this collaborative approach are the pos-
sibility of overwhelming the humans and the possible differ-
ences between the assignment of meaning between people
[Chang et al., 2017], thus, making the annotation a personal
activity. Then, having humans as the input of the information
opens the possibility of human error in the collaboration pro-
cess [Tourangeau et al., 2000], and this issue is well known in
social sciences and psychology, because of response biases in
answering self-reports [West and Sinibaldi, 2013], and more
importantly, these biases are not well-understood [Freedman
et al., 2013].

We propose a novel context model based on the work from
[Giunchiglia et al., 2018]. That work focused on ensuring the
reliability of annotations, whereas our focus is on improving
personal context representations to get closer to work in real-
life scenarios. So, we propose to add a more precise repre-
sentation of personal context that can also work with machine
learning algorithms. We formalize a context model based on
ontology and use it with the streaming data to have a knowl-
edge representation of context data. This formalization al-
lows moving towards a generic definition of context that can
work with existing multi-label machine learning approaches,
using a conversion algorithm. Eventually, the last piece of the
puzzle will be the design and development of the Streaming
System to manage technically the dynamic context data, and
it will be organized in the system architecture with modular
components for independent development and easy deploy-
ment in current cloud environments.

Some examples of our model improvement can be seen
compared with our main related work [Giunchiglia et al.,
2018; Bontempelli et al., 2020; Zeni et al., 2019]. All of
them can take benefit from our novel personal context repre-
sentation and can use our conversions algorithms to explicitly
implement the transformations needed for the machine learn-
ing algorithms.

The paper is structured as follows. Section 2 introduces
context modeling. Section 3 illustrates our representation of
personal context, while we provide the formal representation
in Section 4. Then, we show the learning process to transi-
tion from our formal representation to machine learning rep-
resentation in Section 5 and how our formal representation
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can be converted to a Direct Acyclic Graph (DAG). Finally,
Section 6 describes works related to ours, and Section 7 con-
cludes our paper.

2 The context in time
When we talk about the context, we concentrate on the con-
text of a person called observer. The observer’s context is
the representation of a partial view of the world. We describe
this context into three main dimensions: the viewpoint, the
part-whole relation, and the endurant-perdurant.

Firstly, we have the viewpoint dimension divided as out-
side viewpoint and observer viewpoint. The outside view-
point is the view of an ideal observer who can describe every-
thing from a certain point of view. We distinguish this view
from the world’s static and dynamic properties. In the static
property, there are whatever does not change in time, e.g.,
mountains, buildings, streets. In the dynamic property, there
are not only the moving people, but also the moving animals,
and facilities in their manifestations, like trains. Then, the ob-
server viewpoint describes how the observer perceives what
is around her or him. In this view, we also have the property
of being static or dynamic, but it is relative to the movements
of the observer.

Secondly, context is a part-whole relation. In our every-
day life, when we do things, we are always embedded in the
world. From an ontological view, we are part of the whole
world. Thus, we call reference context as the element of
the outside context with a volume and extension that is large
enough to contain all our movements and changes. For in-
stance, the reference context is the city of Trento when the
user walks around, or the users’ home when they are at home.
In turn, our body as a whole has parts (e.g., arms, mind, legs)
that are with us all the time, and they define the internal con-
text of the user. The internal context identifies the elements
of the user’s body at different levels of abstraction. We usu-
ally distinguish between physical parts, such as arms, body,
fingers, and mental parts, such as mind, memory, emotions.
The context as a part-whole relation is divided into reference
context and internal context, and both contexts with different
dimensions play a role in our life.

Thirdly, context as endurant and perdurant refers to the big-
ger relation to changes in time or space. Events and actions
are perdurants and elements, like me, are endurants.

2.1 The spatio-temporal context
The context, as viewpoints, defines the reference point from
which we construct the context and the context, as part-
whole, defines which parts we should consider. So, next, we
need to define how we keep track of the context from a quan-
titative point of view, with a set of quantitative and qualitative
measures. Therefore, based on these measures, we introduce
the spatio-temporal context.

The spatio-temporal context consists of the temporal and
spatial reference context. The former includes dates, times
and all the additional notations like weekdays and seasons.
The latter contains the world coordinate system. There
are various reasons why context should be represented as a
spatio-temporal context. First, this is a common representa-
tion when we think of the world. Second, any device today

can easily retrieve the time and time zones, and the space co-
ordinates (e.g., via GPS). Third, time can be used to measure
the changes in all the elements of the world, all evolving at
different speeds, thus temporal context allows us to use them
together based time. Finally, a lot of data about the spatial
reference context and its sub-contexts are available from ex-
ternal sources (e.g., Google Maps, OpenStreetMaps).

The spatio-temporal context, also called objective context,
at time t is defined as:

ot = (Dt, Tt : Lt, me, coordt(me),

P 1
t : coordt(P

1), . . . , P k
t : coordt(P

k),

O1
t : coordt(O

1), . . . , Om
t : coordt(O

m))

where Dn, Tn stands for date and time respectively, Ln is
the location, namely the smallest possible spatial reference
context that we can compute. Here me is the observer, P i

are persons and Om are objects. The function coord(. . . )
computes the spatial coordinates of me, objects, and persons.

The number and type of persons and objects change over
time. Hence, we will have a sequence of time-tagged states,
namely O = {o1, . . . , on}. We call the sequence O as the
streaming context. In the streaming context, within the given
reference location, it is easy to compute spatial relations (e.g.,
near, right, left, in front, far relative to the location) of the dif-
ferent elements among themselves. For instance, the system
can compute that the smartphone is in the home building and
the smartphone is near the computer.

2.2 The objective and subjective context
The spatio-temporal context is also called objective context,
since all the relations are computed concerning what is objec-
tively measured, in terms of spatial relations. However, notice
that different observers will have different views of the world.
For instance, the school building has the function of study-
place from the point of view of a student and is the teacher’s
workplace. The word function here is used with the pre-
cise meaning defined in [Giunchiglia and Fumagalli, 2017;
Giunchiglia et al., 2018]. Hence, “the function of an object
formalizes the behavior that an object is expected to have”
[Giunchiglia and Fumagalli, 2017]. For instance, objects are
trains and buildings. The expected behavior may be the pur-
pose of the object (e.g., fridge) or the role of a person (e.g.,
friend).

The subjective context includes both the objective context
elements and the function of persons and objects as seen by
the user. Thus, the subjective context at time t is defined as:

st =(Dt, Tt : Lt,me, coordt(me), Ft(P
1), . . . , Ft(P

k),

Ft(O
1), . . . , Ft(O

m)),

where Fn(P k) and Fn(Om) are the functions with respect to
a person P k and an object Om, respectively. The number and
type of persons and objects, and their functions change over
time. The sequence of subjective contexts over time is defined
as the subjective streaming context S = {s1, . . . , sn}.
2.3 The endurant and perdurant context
In the endurant context [Giunchiglia et al., 2017], its parts
are endurants, essentially objects where the spatial extension
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of their actions is contained by the space defined by the spa-
tial (reference) context. The actions “represents how objects
change in time” [Giunchiglia and Fumagalli, 2017]. For in-
stance, running in a park performed by a runner. We also need
to represent actions, in particular, the actions that are executed
by the endurant me and also by any other elements of the out-
side dynamic context. Actions can be seen in two ways: (i)
actions modeled as processes, namely as sequences of single
micro-steps, each of length close to zero; (ii) actions modeled
as events, which are often also called perdurants, namely as
complete movements which last for a certain duration. Ac-
tions as events have key properties, similar to endurants. An
event and an action can associate with a set of component
sub-events and sub-actions.

Considering the mentioned concepts, the fundamentally
different role of space and time should become clear.
Whereas the parts of the space context are only used to limit
the space where things happen, the parts of time have the
main goal to detail how actions get executed. Things get com-
plicated by adding objects, people, and functions as shown in
the data representations shown in Table 1.

It is worth noting that each function of a person is associ-
ated with a limited set of actions, and the type of action that a
person can perform can be considerably limited by knowing
his or her function.

The actions apply to me and persons, whereas functions
apply to me, other objects and persons. Notice also, that the
stored location L is limited by the most specific location that
we can compute. This is because the bigger locations are
assumed to be static and stored in the system. For events,
instead, we store the smallest possible most general event as
well as those component actions which are done during a cer-
tain period. Thus, for instance, the action/event meeting can
have sub-actions such as talking, walking, listening, typing.
Table 2 reports the streaming context matrix of Example 1
and shows how the context changes over time.

3 The current context
The streaming context describes the contexts of an observer
according to time. To represent each context occurrence, we
define a set of notions to build a figure of the current con-
text. We mainly divide the current context into four types of
context according to how things compose in space and time.
From top to bottom we have the following cases:

• 1L1E (One Location One Event), such as a lecture holds
in a classroom;

• 1LME (One Location Multiple Events), such as a se-
quence of meetings hold in an office, or eat breakfast,
lunch and dinner at home;

• 1EMC (One Event Multiple Locations), such as a travel
goes from many different places;

• MEMC (Multiple Events Multiple Locations), it is the
most complex case, which mixes with the former three
cases.

An 1EMC example is shown in Figure 1, which describes the
following travel scenario around observer me.

Example 1 In the travel scenario, me is Xiaoyue, she has
travel named Travel 1 in the Trentino of Italy from 12:00 to
13:00 of 2th, June 2021. From 12:00 to 12:30 on this day,
she takes train 1 from Rovereto to Trento, she sits on seat 1
by herself. From 12:30 to 12:55 on the same day, she walks
on Roads 2 from Trento Train Station to Xiaoyue’s Home, to-
gether with her friend named Haonan. In addition, Xiaoyue
talks to Haonan, and Haonan listens to Xiaoyue when they
are walking. This scenario involves one event travel and mul-
tiple locations.

In general, in the Figure 1, all elements are divided into
Perdurants and Endurants. Perdurants are the Event and Ac-
tion, and Endurants include Person, Object, and Location. An
Event happens in a Location, a Person and Object appear in
an Event and Action is in a Person. Most elements’ inclu-
sion relationships IN can be represented by the positions of
those elements’ internal boxes. For the top-level Location
and Event, we can add an extra attribute box for them respec-
tively as InLocation(Location) and InEvent(Event), to
represent their belongs.

In the rest of this section, we list the attributes of Location,
Event, Object, Person and Action, each kind of attributes is
represented as a box in the figure. The Location has the fol-
lowing attributes:

• Spatial properties: Coordinates (xi, yi, zi), Volume
(∆xi, ∆yi, ∆yi) , and InLocation(Li) shows the super
Location for the top level Location;

• Visual properties, namely some properties of Location
that can be observed visually;

• Location’ functions: FunctionOf(U) with U ∈
{P 1, . . . , P k, O1, . . . , OM}, which shows location’s
functions for persons and objects;

• An extra box: including the rest part of the context that
happens in the Location.

The Event orders by time and is represented by a box with
round corners. Events include actual events and virtual
events. An Event can have Sub-Events, the Event and Sub-
Event have the following attributes:

• Super Event for the top level event: InEvent(Ei),
which shows the super event Ei for the current Event;

• Temporal properties: Begin Time - End Time (Datei,
Timei - Datej , Timej), which shows the date and time
of the start and end of the event;

• An extra box: including the rest part of the context that
happens in the Event.

The Object appears in Event and has the following attributes:
• Spatial properties: Coordinates (xi, yi, zi), In/Far/...

(P i/Om/...);
• Visual properties, namely some properties of Object that

can be observed visually;
• Object’s functions: FunctionOf(U) with U ∈
{P 1, . . . , P k, O1, . . . , OM}, which shows Object’s
functions for persons and other objects.

The Person appears in Event and has the following attributes:
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{(
D1, T1 : super(L1), super(E1), L1, E1,me, coord1(me), Ame

1 , F1(P 1) : AP 1

1 , . . . , F1(P k) : APk

1 , F1(O1), . . . , F1(Om)
)
,

(
D2, T2 : super(L2), super(E2), L2, E2,me, coord2(me), Ame

2 , F2(P 1) : AP 1

2 , . . . , F2(P k) : APk

2 , F2(O1), . . . , F2(Om)
)
,

. . . ,(
Dn, Tn : super(Ln), super(En), Ln, En,me, coordn(me), Ame

n , Fn(P 1) : AP 1

n , . . . , Fn(P k) : APk

n , Fn(O1), . . . , Fn(Om)
)

}

Table 1: The personal streaming context, where En is an event, super(Ln) and super(En) are the super-classes of Ln or En, re-
spectively. The set of actions performed by me or by the persons based on their functions are denoted with Ak

n = {a1, . . . , ai}, with
k ∈ {me,P 1, . . . , P k}.

Dn Tn super(Ln) super(En) Ln En coordn(me) Ame
n Fn(P

1) : AP1

n Fn(O
1)

02/06/2021 12:15 Trentino Travel 1 Train 1 Take Train x41, y41, z41 Sitting NaN RestToolOf(
Xiaoyue, Seat 1)

02/06/2021 12:30 Trentino Travel 1 Roads 2 Walk x43, y43, z43 Walking,
Talking

FriendOf(
Xiaoyue, Haonan):
Walking, Listening

NaN

Table 2: A streaming context matrix representing the travel scenario of Example 1 from the point of view of Xiaoyue, i.e., the observer me.
P 1 is Haonan and O1 is the object “Seat 1”. Each column is a property, and every row stands for the current context in a specific timestamp.

• Spatial properties: Coordinates (xi, yi, zi),
In/Far/...(P i/Om/...);

• Visual properties, namely some properties of Person that
can be observed visually;

• Person’s functions: FunctionOf(U) with U ∈
{P 1, . . . , P k, O1, . . . , OM}, which shows Person’s
functions for other persons and objects;

• Internal states: Physical states (InPain()), Mental
states (InMood(), InStress());

• An extra box: including the Actions of Person.
The Action is similar with Event, it orders by time and is
represented by a box with round corners. An Action can has
many Sub-Action, the Action and Sub-Action have following
attributes, each attribute has a box for itself.

• Temporal properties: Begin Time - End Time (Datei,
Timei - Datej , Timej), which shows the date and time
of the start and end of the Action;

• Visual properties, namely some properties of Action that
can be observed visually;

• Means of the Action: Means(Om/...);
• Sub-action: Action i;
• Action’s functions: FunctionOf(U) with U ∈
{P 1, . . . , P k, O1, . . . , OM}, which shows Action’s
functions for persons and objects.

4 The current context as a Knowledge Graph
We use the Entity Type Graph (ETG) and the Entity Graph
(EG) in ontology to represent the context. ETG is a knowl-
edge graph where nodes are entity types, which are further

decorated with data properties. The object properties are pre-
sented in the graph representing the relations among the entity
types.

In Figure 2, white box nodes are entity types that include
data properties with data types, the green box nodes enumer-
ates the values of data property. The object properties are con-
necting all entity types, represented by diamond nodes with
arrows. The inheritance relation in the ETG is represented by
an arrow from the super-class to the sub-class, and the sub-
class inherits all the data properties and object properties of
its super-class. The EG populates the entity types and proper-
ties defined in the ETG with specific values. It is a data graph
where nodes are entities that are connected by object property
values representing the relations. Each entity further includes
data property values. The streaming context can be viewed as
a stream of EGs, in which each EG describes the context at a
different time.

We design an EG example as Figure 3 according to the sce-
nario in Example 1. The graph represents the context around
”Me”, this contains entities shown by nodes, e.g., ”Smart-
phone”, ”Talking”, ”Walk”. Also, we can see object property
values.

5 Learning Context
AI applications like smart personal assistants provide a ser-
vice to the users based on their context. The context infor-
mation is usually not available to the machine, and hence it
has to infer the location or the activity of the user from sensor
data (e.g., GPS, accelerometer, nearby Bluetooth devices). In
our scenario, Xiaoyue is carrying a smartphone that generates
a stream of sensor readings, and she annotates the data by an-
swering questions about her context, e.g., “Where are you”
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Figure 1: One Event Multiple Locations: a travel around me. Representation of the Example 1.

and “What are you doing?”. The sensor data are aggregated
in time windows generating a stream of instances (e.g., the
average number of nearby Bluetooth devices in the last 30
minutes). On each incoming instance, the machine decides
whether to query the user to acquire the labels. The machine
learning technique defines the query strategy, and in the sim-
plest case, the labels are acquired on every instance.

The user’s context recognition is a supervised learning

problem in which an instance x is associated to multiple con-
cepts y (aka classes in machine learning). The concepts are
organized in a ground-truth hierarchy H = (C, I), which is
a direct acyclic graph (DAG) where nodes C = {1, . . . , c}
are the concepts and edges I ⊂ C × C are is-a relations,
i.e., I = {(ci, cj) | ci, cj ∈ C and ci is a child of cj} [Silla
and Freitas, 2011]. The labels of the instances are indica-
tor vectors y ∈ {0, 1}c, where the i-th elements is 1 if x
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Figure 2: An ETG representing partially the personal context in our travel example.

belong to i-th concept in H and 0 otherwise. The machine is
trained on a stream of examples zt = (xt,yt) drawn from a
ground-truth distribution P (X,Y) that is always consistent
with a ground-truth hierarchyH, i.e., if there is an edge from
class ci to class cj , then yi = 1 implies yj = 1 and con-
versely yj = 0 implies yi = 0. The goal of this hierarchical
classification tasks is to learn a classifier that recognize well
the context on future sensor readings.

The ETG and EG introduced in Section 4 can be used as
prior knowledge about the structure of the hierarchy. They en-
code the available information about the user and the world.
Algorithm 1 shows the conversion from ETG and EG to a
DAG H. The first step is to convert each entity type (etype)
in the ETG as a node inH (lines 3 - 5). Second, each entity in
EG also becomes a node that is added as a child of the node
referring to the etype of the entity (lines 6 - 10). The hier-
archy encodes the information about the current user, so the
Me etype and the corresponding entity (e.g., Xiaoyue entity
in Figure 3) are not considered.

The properties of the ETG are grouped in properties that
are context depends and properties that are static. The value
of the former changes every time the users change their con-
text and, in Figure 2 are Q = {near, use, interact, in, do,
happenIn, during, participate}. For instance, if Xiaoyue
travel from the city of Trento to Rovereto, the in property
will change accordingly. In contrast, the fact that Trento is
partOf Italy can be assumed to remain valid even if user’s
context is changed. This distinction is necessary since the
value of context-dependent properties are derived from the
output of the context recognition task (e.g., the machine rec-
ognizes that the user is in the city of Trento and thus updates
the in property accordingly). The object properties that are
not contextual are converted as follow. Given a object prop-
erty p ∈ {isA, partOf, has} that links the etype A to B, then
the node referring to etype A becomes a child of the node of
etype B. For the other object properties, a new node referring
to the property is added as child of the codomain etype node
(lines 13 - 19). For every object property value i of the prop-
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Figure 3: An EG representing partially the scenario about travelling of Example 1.

erty p linking the entities a and b, a new node ci is added as
child of cp (i.e., the node referring to the property P ), and as
parent of cb (i.e., the node pointing to the entity b) (lines 20 -
25). Finally, all nodes that does not have a parent are connect
to the root node and the transitive reduction is applied (lines
27 - 30). Figure 4 shows an extract of the DAG resulting from
applying Algorithm 1 on EG and ETG presented in Section 4.

Every node in H has a unique identifier that is used to ref-
erence back to the ETG and EG. The node name can be trans-
lated into a human-readable text that is used to interact with
the user. This aspect is left as future work. The concept hi-
erarchy available at the beginning can evolve over time and
has to be continually updated. This aspect has been defined
as knowledge drift and is addressed in [Bontempelli et al.,
2021].

6 Related Work
Considering our novel context modelling of the personal con-
text, the context learning, and the architecture presented in
this paper, we can show as use cases the papers that in-
dividually compartmentalizes examples for these improve-
ments. Current works on context recognition focus on learn-
ing the relationship between the input data (sensor readings)
and the target concepts (context). The structure of the con-
text is implicitly learned by the implemented machine learn-
ing algorithm during the training phase. The new parts are
described in Section 3 and compared with related work we
can outline the following: 1) the connection between the
learned context model; 2) The extension of new dimensions

Figure 4: A partial representation of the DAG obtained from ETG
and EG examples in Section 4. Orange nodes are derived from EG.
Blue nodes are derived from ETG. Red nodes are actions and green
nodes are the functions.
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Algorithm 1 Convert ETG and EG in a DAG.

Inputs: ETG, EG, and the set of context dependent ob-
ject properties Q
Outputs: H = (C, I)

1: C ← ∅
2: I ← ∅
3: for every etype A 6= Me in ETG do
4: let cA being the node of etype A
5: C = C ∪ {cA}

6: for every entity a such that ¬Me(a) in EG do
7: let ca being the node of the entity a
8: let cA being the node of the etype of a
9: C = C ∪ {ca}

10: I = I ∪ {(ca, cA)}

11: for every object property p in ETG such that p /∈ Q do
12: let cp being the node of p
13: for every p(A,B) in ETG do
14: let cA and cB being the nodes of entity A and B

respectively
15: if p ∈ {isA, partOf, has} then
16: I = I ∪ {(cA, cB)}
17: else
18: C = C ∪ {cp}
19: I = I ∪ {(cp, cB)}
20: for every p(a, b) in EG do
21: let ci being the node encoding p(a, b)
22: let cb being the node of entity b
23: C = C ∪ {ci}
24: I = I ∪ {(ci, cp)}
25: I = I ∪ {(cb, ci)}

26: let c0 being the root node
27: C = C ∪ {c0}
28: for every node c ∈ C that parent(c) = ∅ do
29: I = I ∪ {(c, c0)} add an edge from c to c0
30: apply transitive reduction onH = (C, I)

and classification of context, i.e. Internal State, Functions,
Actions. The Algorithm 1 bridges the gap between the two
modellings allowing context recognition to leverage both ma-
chine learning solutions and knowledge graph representation
(ETG and EG). For instance, the ETG and EG can gener-
ate the questions needed by the machine to interact with the
users. For instance, the personal context recognition model
shown in [Giunchiglia et al., 2018], showed to be a good ap-
proach to increase the accuracy of the context recognition
algorithms. Our work described in Section 3 enhance the
representation of the personal context with the hope to per-
form better in real-life scenarios. In practice, existing ap-
proaches for context recognition using batch or streaming
sensor data [Vaizman et al., 2018; Bontempelli et al., 2020;
Zeni et al., 2019] do not leverage on an explicit context
modeling. The context representation is implicit in the la-

bels used to train the machine learning model. The context
formalization introduced in this work can be used to struc-
ture the output of these machine learning models according
to our representation. Moreover, it can help machine learn-
ing approaches to interact with users. For instance, the ma-
chine can ask if Haonan is a friend of Xiaoyue since they
are walking together. Approaches that use active learning
strategies (e.g., [Settles, 2009; Hoque and Stankovic, 2012;
Hossain et al., 2017]) can benefit of our representation.

Also, existing frameworks for creating context-aware mo-
bile applications, such as Ferreira et al., do not consider the
modelling of the context.

7 Conclusion and Future Work
In this paper, we moved forward with a better representation
of personal context in real-life environments. We proposed an
improved representation of the personal context, adding the
internal state, functions, and actions. The learning aspect of
our work is the formal definition of an algorithm to transform
the streaming input data to ML algorithms. We will put all
these components in the system architecture.

In comparison with the work on personal context recog-
nition for human-machine collaboration [Giunchiglia et al.,
2018], we have shown an enhancement related to the model
representation of the personal context.

Additionally, we have shown how our novel personal con-
text representation can also be leveraged by machine learning
algorithms to include prior knowledge about the structure of
their output and can be used to drive the interaction with the
user. Future work will focus on evaluating the impact of our
formalization on an existing approach for fixing mislabeled
data when learning the users’ contexts [Zeni et al., 2019].

The next step is to propose and implement a modern de-
sign of the services related to iLog [Zeni et al., 2014] by a
centralised streaming system and linking the personal con-
text data collections with other distributed services of ma-
chine learning. This implementation will allow us to test and
evaluate our novel context model in near real-life scenarios.
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Abstract
The paper provides insights into two main threads
of analysis of the BIRAFFE2 dataset concerning
the associations between personality and physio-
logical signals and concerning the game logs’ gen-
eration and processing. Alongside the presen-
tation of results, we propose the generation of
event-marked maps as an important step in the ex-
ploratory analysis of game data. The paper con-
cludes with a set of guidelines for using games as a
context-rich experimental environment.

1 Introduction and Motivation
The development of a good personalised intelligent assistant
that behaves in a natural way requires the development of
proper toolbox as a base [Nalepa et al., 2019]. In order to
be user-friendly, an assistant should not only perform its task,
but also respond to the user’s changing emotions. This is
due to our natural tendency to anthropomorphize interfaces
– the user will assume that the assistant will react appropri-
ately, e.g., understand that the nervousness is due to a mis-
take committed. Such affective information can be extracted
from the range of physiological signals, particularly obtained
through low-cost wearable devices that will make this tech-
nology available to everyone. Finally, it is important to note
that emotions do not happen in a void—they are always de-
pendent on the context a person is in [Prinz, 2006]—so it is
also important to collect information about the user’s current
situation (e.g., activity, weather conditions, time of day).

An important step in establishing the above-outlined
framework for personalized assistants is the collection of the
right data. This, in turn, strictly depends on the develop-
ment of appropriate research environments and experimental
protocols. Such issues are addressed in the BIRAFFE (Bio-
Reactions and Faces for Emotion-based Personalization) se-
ries of experiments [Kutt et al., 2021]. Their main objective
is to develop methods for emotion recognition using a range
of contextual information and physiological signals such as
cardiac activity (ECG), electrodermal response (EDA), hand
movements (accelerometer) or changes in facial expression.
In order to ensure that the research is highly ecological in

∗Corresponding Author

measurement and easily extendable to wider research groups,
wearable and portable, affordable-for-all devices are used.

A key aspect of the BIRAFFE experiments is the use of
games as the experimental environment. They were cho-
sen as a trade-off between a stimulus-rich complex near-
natural environment and the need to control and record as
much context as possible to provide the most detailed post-
experimental analyses. The latest version of the experiment,
BIRAFFE2 [Kutt et al., 2020]1, used a game consisting of
three independent levels. The aim of the first was to evoke
positive emotions. The second was intended to induce irrita-
tion and frustration, e.g., through impaired control. Finally,
the third level was a neutral maze. A detailed description of
the games is presented in [Żuchowska et al., 2020].

This paper provides insights into the core analyses of the
BIRAFFE2 dataset on contextual information processing in
affective games. The first thread, presented in Sect. 2, fo-
cuses on the analysis of the relationship between physiologi-
cal signals and the so-called “Big Five” personality traits. The
existence of such relationships in the data will allow further
work to create emotion prediction models that will be moder-
ated and personalised through the identification of personality
profiles. The second topic, described in Sect. 3, addresses the
topic of accurate game logging and the possibility of recon-
structing an entire game from such stored logs. The whole
article concludes with a set of lessons-learned regarding the
implementation of games as an experimental environment in
Sect. 4.

2 Physiological Signals and Personality
Before undertaking the analyses, three features were calcu-
lated for ECG signal using HeartPy library [van Gent et al.,
2019]: heart rate (number of heart beats per minute), mean
of successive differences between R-R intervals (MoSD) and
breathing rate. Also, to group the valence and arousal scores
into discrete variable, 16 clusters were introduced as pre-
sented on Fig. 1.

In order to find correlations and dependencies between
physiological data (the ECG signal was chosen as an illus-
tration) and personality traits (each on [1, 10] scale), several

1The entire dataset from the BIRAFFE2 experiment
is available under CC licence on the Zenodo platform,
DOI:10.5281/zenodo.3865859.
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Figure 1: Valence and arousal scores grouped into clusters.

Personality Trait Mean SD Median

Conscientiousness 5.68 2.61 6
Openness 5.48 2.22 6
Agreeableness 6.25 2.39 6
Extraversion 5.84 2.29 7
Neuroticism 5.38 2.45 5

Table 1: Descriptive statistics for personality traits.

approaches to statistical analysis were made. Firstly, basic
descriptive statistics were calculated to find outliers and pos-
sible extremas. As can be seen in Tab. 1-2, the data was dis-
tributed proportionally in terms of mean, median and stan-
dard deviation, which indicates a promising start for further
analysis.

The second analysis was aimed at investigation of corre-
lations between features. Although the results did not show
any strong dependencies between them (see Fig. 2), they in-
dicated the existence of potentially interesting relationships
worthy of further analysis and further research. Namely,
in terms of the associations between personality and widget
responses, valence and arousal are related to distinct traits.
For arousal, the highest values are for openness and consci-
entiousness. On the other hand, valence’s most significant
factors are agreeableness and extraversion. When consider-
ing the correlations between physiological reactions and wid-
get, among heart rate, MoSD, and respiratory rate, the high-
est values were noted for the first of these for both valence
and arousal. The outcome of personality trait to heart rate
was presented as maximal for both conscientiousness and ex-
traversion. Considering the MoSD, highest value—and the
highest inter-correlation in general, i.e., the correlation be-
tween different data sources—was for extraversion (0.23) and
conscientiousness (−0.19). Finally, values of correlation for
breathing rate played in favor of extraversion.

The last statistical analysis performed was two ANOVAs
for valence and arousal (see Tab. 3-4), which indicated sev-

ECG characteristic Mean SD

Heart rate [BPM] 80.92 16.21
MoSD [ms] 34.41 37.89
Breathing rate [Hz] 0.10 0.12

Table 2: Descriptive statistics for ECG characteristics.

Independent var. df MS F p

Conscientiousness 1 3.85 0.60 0.44
Openness 1 5.24 0.82 0.37
Agreeableness 1 68.57 10.70 0.001
Extraversion 1 6.12 0.95 0.33
Neuroticism 1 0.02 0.004 0.95
Heart rate 1 59.97 9.35 0.002
MoSD 1 0.87 0.14 0.71
Breathing rate 1 2.91 0.45 0.50
Residual Error 10881 6.41

Table 3: ANOVA model for valence with five personality traits and
three ECG-related characteristics as independent variables.

eral strong associations. What seems most interesting is the
strong relationship between heart rate and valence, which is
somehow in opposition to most approaches in which heart
rate is used to predict arousal, while other signals such as
EDA are mostly used for valence [Dzedzickis et al., 2020].

3 Game Logs and Questionnaires
As noted in the introduction, one motivation for using games
as an experimental environment is the ability to frequently
sample and log the entire player context. Properly prepared
logs should allow the reconstruction of both the level map (the
same for each subject) and the course of the entire game for
each player. Indeed, this is possible for the games studied.
As part of the log analyses, a number of maps were gener-
ated, which were verified by comparison with the games and
recorded screencasts of the gameplay. These maps can also
be used for aggregated analyses, e.g., by plotting all events of
one type followed by an initial visual inspection. Fig. 3 shows
all the death locations of the protagonist in the first level. One
can notice a very high number of deaths in the central room
– this is consistent with the observations made during the ex-
periment: this is the first room where players are just getting
familiar with the game interface.

Another part of the analysis was the examination of an-
swers from Game Experience Questionnaire [IJsselsteijn et
al., 2013], a survey taken by each participant by the end of
the experiment. The results allow to understand whether the
games made an impact on emotional state of the subjects, ac-
cording to themselves. The results are represented by 7-factor
structure. Five of them were further analysed, as they were
the most relevant to the assumed game differences:

• Challenge – I felt time pressure/I had to put a lot effort,

• Tension – I was irritated/I feel angry,

• Negative affect – I felt bad/made me bored,
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Figure 2: Correlation matrix for five personality traits, three ECG-related characteristics and widget responses represented as Valence, Arousal
and Cluster.

Independent var. df MS F p

Conscientiousness 1 60.43 14.50 < 0.001
Openness 1 101.03 24.25 < 0.001
Agreeableness 1 44.51 10.68 0.001
Extraversion 1 9.61 2.31 0.13
Neuroticism 1 13.14 3.15 0.08
Heart rate 1 138.06 33.13 < 0.001
MoSD 1 11.27 2.71 0.10
Breathing rate 1 1.64 0.39 0.53
Residual Error 10881 4.17

Table 4: ANOVA model for arousal with five personality traits and
three ECG-related characteristics as independent variables.

• Positive affect – I felt good/made me happy,

• Competence – I felt competent/skillful.

The factors were compared to each other in order to dig
into the feelings of players. The expectations for the first
game were that subject is supposed to feel happy (high pos-
itive, low negative, low tension) and not challenged (high
competence, low challenge). The second stage’s purpose was
contrary to the first one – high negative, tension and chal-
lenge, with low competence and positive. The huge differ-
ence is more likely to have an impact, as the contrast is hitting
the player suddenly. Based on the GEQ results (see Fig. 4),
one can state that everything worked as planned.

The Competence line during first gameplay was set pretty
high, while leaving the tension line in the bottom, making
the subject feel calm enough to let their guard down, but still
be entertained by the gameplay. The second stage’s extreme
difficulty and pressure-building environment made the expe-
rience hard to enjoy. A very similar result can be seen in
Negative/Tension comparison. About 95% of the participants
agreed that the second level has left them irritated, 83,5%

Figure 3: Map for Stage 1 recreated from game logs with all death-
related events marked as dots.

were not happy during and after the game. This cannot be
said about the first stage, where according to the answers,
only 30% of subjects felt somewhat irritated. Same outcome
can be said about positive feedback for both stages – the first
was keeping the emotions of participants on a very high level
of happiness, while the second one changed it for a little one.

4 Discussion and Lessons Learned
As a summary of the analyses presented, we propose a set
of guidelines concerning the issues one should pay attention
to when creating games with the intention of using them as
context-rich experimental environments:
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Figure 4: GEQ factors for the first and second level (green and yel-
low, respectively). Horizontal lines mark the average values.

1. It is important to take into account the features of the
subjects in the contextual information set. In line with
the results obtained from the BIRAFFE1 [Kutt et al.,
2021] and DEAP [Zhao et al., 2019] datasets, the anal-
yses summarised in Sect. 2 indicate interesting relation-
ships between personality traits and physiological sig-
nals. Merging such several subject-related contextual in-
formation will allow a more accurate analysis leading to
better modelling of a person’s behaviour in the consid-
ered environment.

2. The set of stimuli should be well balanced so that there
are neither too many (which will make analysis difficult)
nor too few (the environment will not be interesting for
the subject). Small levels, each focusing on selected as-

pects, should be preferred to one large level that com-
bines all experimental manipulations. The levels anal-
ysed achieved their objectives well, as shown by the re-
sults of the GEQ questionnaire in Sect. 3.

3. Logs should be collected as densely as possible, accord-
ing to the specifics of the game being developed. All
features necessary to reproduce the gameplay should
be recorded. In the analyses carried out, it was found
that the logs were sufficiently detailed to reproduce the
progress of the game. However, the data lacked infor-
mation on the type of death in the second level, which
would be useful to compare with the emotions felt at the
time of death. This information is still reproducible, e.g.,
from the recorded screencasts, however it will require a
fair amount of data processing.

4. Maps with events marked on them are a useful tool for
exploratory analysis of game logs. There are a num-
ber of studies concerning the analysis of game logs
(e.g., [Cheong et al., 2008]), including those related to
the evaluation of social science theories [Shim et al.,
2011]. However, to the best of our knowledge, data vi-
sualisation in the form of maps (as in Fig. 3) has not
been done as part of the analyses. We believe that this
is a valuable approach to quickly assess the validity of
the data and to propose hypotheses that have not been
considered before.

These findings will be incorporated into the preparation of
the next experiment in the BIRAFFE series, planned for Au-
tumn 2021.
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Abstract
Many online comments on social media platforms
are hateful, humorous, or sarcastic. The sarcastic
nature of these comments (especially the short ones)
alters their actual implied sentiments, which leads
to misinterpretations by the existing sentiment anal-
ysis models. A lot of research has already been done
to detect sarcasm in the text using user-based, top-
ical, and conversational information but not much
work has been done to use inter-sentence contex-
tual information for detecting the same. This pa-
per proposes a new deep learning architecture that
uses a novel Bidirectional Inter-Sentence Contextual
Attention mechanism (Bi-ISCA) to capture inter-
sentence dependencies for detecting sarcasm in the
user-generated short text using only the conversa-
tional context. The proposed deep learning model
demonstrates the capability to capture explicit, im-
plicit, and contextual incongruous words & phrases
responsible for invoking sarcasm. Bi-ISCA gener-
ates results comparable to the state-of-the-art on two
widely used benchmark datasets for the sarcasm de-
tection task (Reddit and Twitter). To the best of our
knowledge, none of the existing models use an inter-
sentence contextual attention mechanism to detect
sarcasm in the user-generated short text using only
conversational context.

1 Introduction
Sentiment analysis is one of the most important natural lan-
guage processing (NLP) applications. Its goal is to identify,
extract, quantify, and study subjective information. The sud-
den rise in the usage of social media platforms as a means of
communication has led to a vast amount of data being shared
between its users on a wide range of topics. This type of data
is very helpful to several organizations for analyzing the senti-
ments of people towards products, movies, political events, etc.
Understanding the unique intricacies of the human language
remains one of the most important pending NLP problems
of this time. Humans regularly use sarcasm as a crucial part
of the day-to-day conversations when venting, arguing, or

∗Contact Author

maybe engaging on social media platforms. Sarcastic remarks
on these platforms inflict problems on the existing sentiment
analysis systems in identifying the true intentions of the users.

The Cambridge Dictionary1 describes sarcasm as an irony
conveyed hilariously or amusingly to criticize something. Sar-
casm may not show criticism on the surface but instead might
have a criticizing implied meaning. Such a figurative aspect of
sarcasm makes it difficult to be detected in the modern micro
texts [Ghosh and Veale, 2016]. Several linguistic research has
been done to analyze different aspects of sarcasm. Kind of
responses evoked because of comments has been considered a
major indicator of sarcasm [Eisterhold et al., 2006]. [Wilson,
2006] states that circumstantial incongruity between a com-
ment and its corresponding contextual information plays an
important role in implying sarcasm.

Previous research works have used policy-based, statisti-
cal, and deep-learning-based methods for detecting sarcasm.
The use of contextual information like conversational con-
text, author personality features, or prior knowledge of the
topic, have proved to be very useful. [Khattri et al., 2015]
used sentiments of the author’s historical tweets as context.
[Rajadesingan et al., 2015] used personality features like the
author’s familiarity with twitter, language (structure and word
usage), and the author’s familiarity with sarcasm (history of
previous sarcastic tweets) for consolidating context. [Bamman
and Smith, 2015] explored the use of historical terms, topics,
and sentiments along with profile information as the author’s
context. They also exploited the use of conversational context
like the immediate previous tweets in the thread. [Joshi et al.,
2015] demonstrated that concatenation of preceding comment
with the objective comment in a discussion forum led to an
increase in the precision score.

Overall in recent years a lot of work has been done to use
different types of contextual information for sarcasm detection
but none of them have used inter-sentence dependencies. In
this paper, we propose a novel Bidirectional Inter-Sentence
Contextual Attention mechanism (Bi-ISCA) based deep learn-
ing neural network for sarcasm detection. The main contribu-
tion of this paper can be summarised as follows:

• We propose a new deep learning architecture that uses a
novel Bidirectional Inter-Sentence Contextual attention
mechanism (Bi-ISCA) for detecting sarcasm in short texts

1https://dictionary.cambridge.org/
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(short texts are more difficult to analyze due to shortage
of contextual information).

• Bi-ISCA focuses on only using the conversational con-
textual comment/tweet for detecting sarcasm rather than
using any other topical/personality-based features, as us-
ing only the contextual information enriches the model’s
ability to capture syntactical and semantical textual prop-
erties responsible for invoking sarcasm.

• We also explain model behavior and predictions by vi-
sualizing attention maps generated by Bi-ISCA, which
helps in identifying significant parts of the sentences re-
sponsible for invoking sarcasm.

The rest of the paper is organized as follows. Section 2
describes the related work. Then section 3, explains the pro-
posed model architecture for detecting sarcasm. Section 4
will describe the datasets used, pre-processing pipeline, and
training details for reproducibility. Then experimental results
are explained in section 5 and section 6 illustrates model be-
havior and predictions by visualizing attention maps. Finally
we conclude in section 7.

2 Related Work
A diverse spectrum of approaches has been used to detect
sarcasm. Recent sarcasm detection approaches have either
mainly focused on using machine learning based approaches
that leverage the use of explicitly declared relevant features
or they focus on using neural network based deep learning
approaches that do not require handcrafted features. Also, the
recent advances in using deep learning for preforming natural
language processing tasks have led to a promising increase in
the performance of these sarcasm detection systems.

A lot of research has been done using bag of words as
features. However, to improve performance, scholars started
to explore the use of several other semantic and syntactical
features like punctuations [Tsur et al., 2010]; emotion marks
and intensifiers [Liebrecht et al., 2013]; positive verbs and
negative phrases [Riloff et al., 2013]; polarity skip grams
[Reyes et al., 2013]; synonyms & ambiguity[Barbieri et al.,
2014]; implicit and explicit incongruity-based [Joshi et al.,
2015]; sentiment flips [Rajadesingan et al., 2015]; affect-based
features derived from multiple emotion lexicons [Farías et al.,
2016].

Every day an enormous amount of short text data is gener-
ated by users on popular social media platforms like Twitter2

and Reddit3. Easy accessibility of such data sources has en-
ticed researchers to use them for extracting user-based and
discourse-based features. [Hazarika et al., 2018] utilized con-
textual information by making user-embeddings for capturing
indicative behavioral traits. These user-embeddings incorpo-
rated personality features along with the author’s writing style
(using historical posts). They also used discourse comments
along with background cues and topical information for detect-
ing sarcasm. They performed their experiments on the largest
Reddit dataset SARC [Khodak et al., 2018]. Many have only
used the target text for classification purposes, where a target

2www.twitter.com/
3www.reddit.com/

text is a textual unit that has to be classified as sarcastic or
not. Simply using gated recurrent units (GRU) [Cho et al.,
2014] or long short term memory (LSTM) [Hochreiter and
Schmidhuber, 1997] do not capture in between interactions
of word pairs which makes it difficult to model contrast and
incongruity. [Tay et al., 2018] were able to solve this problem
by looking in-between word pairs using a multi-dimensional
intra-attention recurrent network. They focused on modeling
the intra-sentence relationships among the words. [Kumar et
al., 2020] exploited the use of a multi-head attention mecha-
nism [Vaswani et al., 2017] which could capture dependencies
between different representations subspaces in different posi-
tions. Their model consisted of a word encoder for generating
new word representations by summarizing comment contex-
tual information in a bidirectional manner. On top of that, they
used multi-head attention for focusing on different contexts
of a sentence, and in the end, a simple multi-layer perceptron
was used for classification.

There has not been much work done in conversation depen-
dent (comment and reply) approaches for sarcasm detection.
[Ghaeini et al., 2018] proposed a model that not only used
information from the target utterance but also used its conver-
sational context to perceive sarcasm. They aimed to detect
sarcasm by just using the sequences of sentences, without any
extra knowledge about the user and topic. They combined the
predictions from utterance-only and conversation-dependent
parts for generating its final prediction which was able to cap-
ture the words responsible for delivering sarcasm. [Ghosh and
Veale, 2017] also modeled conversational context for sarcasm
detection. They also attempted to derive what parts of the con-
versational context triggered a sarcastic reply. Their proposed
model used sentence embeddings created by taking an average
of word embeddings and a sentence-level attention mechanism
was used to generate attention induced representations of both
the context and the response which was later concatenated and
used for classification.

Among all the previous works, [Ghaeini et al., 2018] and
[Ghosh and Veale, 2017] share similar motives of detecting
sarcasm using only the conversational context. However, we
introduce a novel Bidirectional Inter-Sentence Contextual At-
tention mechanism (Bi-ISCA) for detecting sarcasm. Unlike
previous works, our work considers short texts for detecting
sarcasm, which is far more challenging to detect when com-
pared to long texts as long texts provide much more contextual
information.

3 Model
This section will introduce the proposed Bi-ISCA: Bidirec-
tional Inter Sentence Contextual Attention based neural net-
work for sarcasm detection (as shown in Figure 1). Sarcasm
detection is a binary classification task that tries to predict
whether a given comment is sarcastic or not. The proposed
model uses comment-reply pairs for detecting sarcasm. The
input to the model is represented by U = [Wu

1 ,W
u
2 , ....,W

u
n ]

and V = [W v
1 ,W

v
2 , ....,W

v
n ], where U represents the com-

ment sentence and V represents the reply sentence (both sen-
tences padded to a length of n). Here, Wu

i ,W
v
j ∈ Rd are

d−dimensional word embedding vectors. The objective is
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Figure 1: Bi-ISCA: Bi-Directional Inter-Sentence Contextual Attention Mechanism for Sarcasm Detection.

to predict label y which indicates whether the reply to the
corresponding comment was sarcastic or not.

3.1 Intra-Sentence Word Encoder Layer
The primary purpose of this layer is to summarize intra-
sentence contextual information from both directions in both
the sentences (comment & reply) using Bidirectional Long
Short Term Memory Networks (Bi-LSTM). A Bi-LSTM
[Schuster and Paliwal, 1997] processes information in both
the directions using a forward LSTM [Hochreiter and Schmid-
huber, 1997]

−→
h , that reads the sentence S = [w1, w2, ...., wn]

from w1 to wn and a backward LSTM
←−
h that reads the sen-

tence from wn to w1. Hidden states from both the LSTMs are
added to get the final hidden state representations of each word.
So the hidden state representation of the tth word (ht) can be
represented by the sum of tth hidden representations of the
forward and backward LSTMs (

−→
ht ,
←−
ht) as show in equations

below.
−→
ht =

−−−−→
LSTM(wt,

−−→
ht−1);

←−
ht =

←−−−−
LSTM(wt,

←−−
ht−1) (1)

ht =
←−
ht +

−→
ht (2)

This Intra-Sentence Word Encoder Layer consists of
two independent Bidirectional LSTMs for both comment
(BiLSTMc) and reply (BiLSTMr). Apart from the hidden
states, both these Bi-LSTMs also generate separate (forward
& backward) final cell states represented by

←−
C &

−→
C . The

comment sentence U is given as an input to BiLSTMc and
the reply sentence V is given as an input to BiLSTMr. The
outputs of both the Bi-LSTMs are represented by the equations
3 and 4. −→

Cu, h
u,
←−
Cu = BiLSTMc(U) (3)

−→
Cv, h

v,
←−
Cv = BiLSTMr(V ) (4)

Here,
−→
Cu,
−→
Cv ∈ Rd are the final cell states of the for-

ward LSTMs corresponding to BiLSTMc & BiLSTMr;←−
Cu,
←−
Cv ∈ Rd are the final cell states of the backward

LSTMs corresponding to BiLSTMc & BiLSTMr; hu =
[hu1 , h

u
2 , ...., h

u
n] and hv = [hv1, h

v
2, ...., h

v
n] are the hidden

state representations of BiLSTMc & BiLSTMr respec-
tively, where hui , h

v
j ∈ Rd and hu, hv ∈ Rn×d.

3.2 Bi-ISCA: Bidirectional Inter-Sentence
Contextual Attention Mechanism

Sarcasm is context-dependent in nature. Even humans some-
times have a hard time understanding sarcasm without hav-
ing any contextual information. The hidden states gener-
ated by both the Bi-LSTMs (BiLSTMc & BiLSTMr) cap-
tures the intra-sentence bidirectional contextual information
in comment & reply respectively, but fails to capture the inter-
sentence contextual information between them. This paper
introduces a novel Bidirectional Inter-Sentence Contextual At-
tention mechanism (Bi-ISCA) for capturing the inter-sentence
contextual information between both the sentences.

Bi-ISCA uses hidden state representations of U & V along
with the auxiliary sentence’s cell state representations (

−→
C&
←−
C )

to capture the inter-sentence contextual information. At
first, the attention mechanism captures four sets of atten-
tions scores namely, (α

−→
Cu , α

←−
Cu , α

−→
Cv , α

←−
Cv ∈ Rn). These sets

of inter-sentence attention scores are used to generate new
inter-sentence contextualized hidden representations. Then
(α
−→
Cu , α

←−
Cu) are calculated using the hidden state representa-

tions of BiLSTMr along with the forward and backward
final states (

−→
Cu,
←−
Cu) of BiLSTMc (as shown in equations
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5 & 6), similarly (α
−→
Cv , α

←−
Cv ) are calculated using the hidden

state representations of BiLSTMc along with the forward
and backward final states (

−→
Cv,
←−
Cv) of BiLSTMr (as shown

in equations 7 & 8). In the equations below (•) represents a
dot product between two vectors.

α
−→
Cu = [α

−→
Cu
1 , α

−→
Cu
2 , ...., α

−→
Cu
n ];α

−→
Cu
i =

−→
Cu • hvi (5)

α
←−
Cu = [α

←−
Cu
1 , α

←−
Cu
2 , ...., α

←−
Cu
n ];α

←−
Cu
i =

←−
Cu • hvi (6)

α
−→
Cv = [α

−→
Cv
1 , α

−→
Cv
2 , ...., α

←−
Cv
n ];α

−→
Cv
i =

−→
Cv • hui (7)

α
←−
Cv = [α

←−
Cv
1 , α

←−
Cv
2 , ...., α

←−
Cv
n ];α

←−
Cv
i =

←−
Cv • hui (8)

In the next step, the above calculated sets of inter-sentence
attention scores α

−→
Cu , α

←−
Cu) are multiplied back with the hid-

den state representations of BiLSTMr to generate two new
set of hidden representations h

−→
Cu
v , h

←−
Cu
v ∈ Rn×d of the re-

ply sentence namely, reply contextualized on comment (for-
ward) & reply contextualized on comment (backward) respec-
tively (as shown in equations 9 & 10). Similarly α

−→
Cv , α

←−
Cv

are multiplied back with the hidden state representations of
BiLSTMc to generate two new set of hidden representations
h
−→
Cv
u , h

←−
Cv
u ∈ Rn×d of the comment sentence namely, comment

contextualized on reply (forward) & comment contextualized
on reply (backward) respectively (as shown in equations 11
& 12). In the equations below (×) represents multiplication
between a scalar and a vector.

h
−→
Cu
v = [h

−→
Cu
v,1, h

−→
Cu
v,2, ...., h

−→
Cu
v,n], ;h

−→
Cu
v,i = α

−→
Cu
i × hvi (9)

h
←−
Cu
v = [h

←−
Cu
v,1, h

←−
Cu
v,2, ...., h

←−
Cu
v,n], ;h

←−
Cu
v,i = α

←−
Cu
i × hvi (10)

h
−→
Cv
u = [h

−→
Cv
u,1, h

−→
Cv
u,2, ...., h

−→
Cv
u,n], ;h

−→
Cv
u,i = α

−→
Cv
i × hui (11)

h
←−
Cv
u = [h

←−
Cv
u,1, h

←−
Cv
u,2, ...., h

←−
Cv
u,n], ;h

←−
Cv
u,i = α

←−
Cv
i × hui (12)

3.3 Integration and Final Prediction
The proposed model uses Convolutional Neural Networks
(CNN) [Lecun et al., 1998] for capturing location-invariant
local features from the newly obtained contextualized hid-
den representations h

←−
Cv
u , h

−→
Cv
u , h

←−
Cu
v , h

−→
Cu
v . Four independent

CNN blocks (CNN1, CNN2, CNN3, CNN4) are used, cor-
responding to each of the newly obtained contextualized hid-
den representations. Each CNN block consists two convolu-
tional layers. Both the convolution layer consist of k filters
of height h. The role of these filters is to detect particular
features at different locations of the input. The output cli of
the lth layer consists of kl feature maps of height h. The ith
feature map (cli) is calculated as:

cli = bli +

j=1∑

kl−1

Kl
i,j ∗ cl−1j (13)

In the above equation, bli is a bias matrix and Kl
i,j is a filter

connecting jth feature map of layer (l − 1) to the ith feature
map of layer (l). The output of each convolution layer is
passed through a activation function f . The proposed model
uses LeakyReLu as its activation function.

f =

{
a ∗ x, for x ≥ 0; a ∈ R (14)
x, for x < 0 (15)

For each of the CNN blocks, the corresponding contextu-
alized hidden representations are first concatenated (⊕) and
then given as input. The outputs of all the CNN blocks are
flattened (F1, F2, F3, F4 ∈ Rdk) and concatenated to generate
a new vector (p ∈ R4dk), where d represents the dimension of
the hidden representation and k represents number of convolu-
tional filters used. This concatenated (p) vector is then given
as input to a dense layer having 4dk neurons and is followed
by the final sigmoid prediction layer.

F1 = CNN1([h
−→
Cv
u,1 ⊕ h

−→
Cv
u,2 ⊕ ....⊕ h

−→
Cv
u,n]) (16)

F2 = CNN2([h
←−
Cv
u,1 ⊕ h

←−
Cv
u,2 ⊕ ....⊕ h

←−
Cv
u,n]) (17)

F3 = CNN3([h
−→
Cu
v,1 ⊕ h

−→
Cu
v,2 ⊕ ....⊕ h

−→
Cu
v,n]) (18)

F4 = CNN4([h
←−
Cu
v,1 ⊕ h

←−
Cu
v,2 ⊕ ....⊕ h

←−
Cu
v,n]) (19)

p = [F1 ⊕ F2 ⊕ F3 ⊕ F4] (20)

ŷ = σ(Wp+ b), W ∈ R4dk; b ∈ R (21)
The proposed model uses the binary cross-entropy as the

training loss function as shown in equation 22. Here (L) is the
cost function, ŷi ∈ R represents the output of the proposed
model, yi ∈ R represents the true label and N ∈ N represents
the number of training samples.

L = − 1

N

N∑

i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi) (22)

4 Evaluation Setup
4.1 Dataset
This paper focuses on detecting sarcasm in the user-generated
short text using only the conversational context. Social media
platforms like Reddit and Twitter are widely used by users for
posting opinions and replying to other’s opinions. They have
proved to be of a great source for extracting conversational
data. So the experiments were conducted on two publicly
available benchmark datasets (Reddit & Twitter) used for the
sarcasm detection task. Both the datasets consist of comments
and reply pairs.

SARC4 Reddit [Khodak et al., 2018] is the largest
dataset available for sarcasm detection containing millions
of sarcastic/non-sarcastic comments-reply pairs from the so-
cial media site Reddit. This dataset was generated by scraping

4https://nlp.cs.princeton.edu/SARC/2.0/
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No. of comment-reply pairs Avg. no. of words per comment Avg. no. of words per reply
Sarcastic Non-Sarcastic Sarcastic Non-Sarcastic Sarcastic Non-Sarcastic

Training set Reddit Balanced 81205 81205 12.69 12.67 12.19 12.21
Imbalanced 16303 81205 12.69 12.65 12.15 12.21

Twitter Balanced 3496 3496 24.97 24.97 24.25 24.25

Testing set Reddit Balanced 9058 9058 12.71 12.64 12.14 12.22
Imbalanced 1747 9058 12.73 12.69 12.20 12.21

Twitter Balanced 874 874 24.97 24.97 24.25 24.25

Table 1: Statics of the SARC dataset and FigLang 2020 workshop Twitter dataset.

comments from Reddit containing the \s (sarcasm) tag. It
contains replies, their parent comment (acts as context), and a
label that shows whether the reply was sarcastic/non-sarcastic
to their corresponding parent comment. To compare the perfor-
mance of the model on a different dataset (latest), the proposed
model was also evaluated on the Twitter dataset provided in the
FigLang5 2020 workshop [Ghosh et al., 2020] for the "sar-
casm detection shared task". This consists of sarcastic/non-
sarcastic tweets and their corresponding contextual parent
tweets. The sarcastic tweets were collected using hashtags
like #sarcasm, #sarcastic, and #irony, similarly non-sarcastic
tweets were collected using hashtags like #happy, #sad, and
#hate. This dataset sometime contains more than one contex-
tual parent tweet, so in those cases, all of the contextual tweets
are considered independently with the target tweet.

In both the datasets, replies are the target comment/tweet to
be classified as sarcastic/non-sarcastic, and their correspond-
ing parent comment/tweet acts as context. Both the datasets
constitute of comments/tweets of varying lengths, but because
this paper only focuses on detecting sarcasm in the short text,
only the short comment/reply pairs were used. Comment/reply
sentences of length (no. of words) less than 20, 40 were used
in the case of SARC and Twitter dataset respectively. In
both cases, the balanced datasets contain equal proportions
of sarcastic/non-sarcastic comment/reply pairs, and the imbal-
anced datasets maintain a 20:80 ratio (approximately) between
sarcastic and non-sarcastic comment/reply pairs. Testing was
done on 10% of the dataset and the rest was used for train-
ing. 10% of the training set was used for validation purposes.
Statistics of both the datasets are shown in Table 1.

4.2 Data Preprocessing
The preprocessing of the textual data was done by first lower-
casing all the sentences and separating punctuations from the
words. We do not remove the stop-words because we believe
that sometimes stop-words play a major role in making a sen-
tence sarcastic e.g., "is it?" and "am I?". The problem with
social media platforms is that, users use a lot of abbreviations,
shortened words and slang words like, "IMO" for "in my opin-
ion", lmk" for "let me know ", "fr" for "for", etc. These words
are challenging to taken care of in the NLP tasks, particularly
in the automatic discovery of flexible word usages. So to solve
this problem, these words are converted to their corresponding
full-forms using abbreviation/slang word dictionaries obtained
from urban dictionary6. After this, all the sentences were tok-
enized into a list of words. The proposed model had a fixed
input size for both comment and reply, but not all the sentences
were of the same length. So all the sentences were padded

5sites.google.com/view/figlang2020
6https://www.urbandictionary.com/

to the length of the longest sentence (20 in the case of the
Reddit dataset and 40 in the case of the Twitter dataset). Word
embeddings are used to give semantically-meaningful dense
representations to the words. Word-based embeddings are
constructed using contextual words whereas character-based
embeddings are constructed from character n-grams of the
words. Character-based in contrast to the Word-based em-
beddings solves the problem of out of vocabulary words and
performs better in the case of infrequent words by creating
word embeddings based only on their spellings. So for gener-
ating proper representations for words we have used FastText7,
a character-based word embedding. This would not only give
words better representation compared to the word-based model
but also incorporate slang/shortened/infrequent words (which
commonly appear in social media platforms).

4.3 Training Details
We have used macro-averaged (F1) and accuracy (Acc) scores
as the evaluation metric, as it is standard for the sarcasm
detection task. We have also reported Precision (P) and Recall
(R) scores in the case of the Twitter dataset as well as for the
Reddit dataset (wherever available). Hyperparameter tuning
was used to find optimum values of the hyperparameters. The
FastText embeddings used were of size d = 30 and were
trained for 30 iterations having window size of 3, 5 in the case
of SARC, and Twitter dataset respectively. The number of
filters in all the convolutional blocks were [64, 64] of height
[2, 2]. The learning optimizer used is Adam with an initial
learning rate of 0.01. The value of α in all the LeakyReLu
layers was set to 0.3. All the models were trained for 20
epochs. L2 regularization set to 10−2 is applied to all the
feed-forward connections along with early stopping having
the patience of 5 to avoid overfitting. The mini-batch size
was tuned amongst {100, 500, 1000, 2000, 3000, 4000} and
was observed that mini-batch size of 2000, 500 gave the best
performance for the SARC and Twitter dataset respectively.

The recent success of transformer-based language models
has led to their wide usage in sentiment analysis tasks. They
are known for generating high quality high dimensional word
representations (768-dimensional for BERT). Their only draw-
back is that they require high processing power and memory
to train. The above-mentioned configuration of the proposed
model generates≈1120K trainable parameters, and increasing
either the embedding size or the number of tokens in a sen-
tence led to an exponential increase in the number of trainable
parameters. So due to computational resource limitations, we
limited our experiments to lower-dimensional word embed-
dings.

7https://fasttext.cc/
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5 Results

Models Balance Imbalanced
Acc F1 P R Acc F1 P R

CNN-SVM [Poria et al., 2016] †? 68.0 68.0 – – 69.0 79.0 – –
AMR [Ghaeini et al., 2018] ‡ 69.5 69.5 74.8 69.7 – – – –
[Ghosh and Veale, 2017] ‡ – 67.8 68.2 67.9 – – – –
CUE-CNN [Amir et al., 2016] †? 70.0 69.0 – – 73.0 81.0 – –
MHA-BiLSTM [Kumar et al., 2020] † – 77.5 72.6 83.0 – 56.8 60.3 53.7
CASCADE [Hazarika et al., 2018] ‡? 77.0 77.0 – – 79.0 86.0 – –
CASCADE (only discourse features) ‡ 68.0 66.0 – – 68.0 78.0 – –
Bi-ISCA (this paper) ‡ 72.3 75.7 74.2 77.6 71.9 74.4 73.0 75.8
∆ increase w.r.t CASCADE

4.3 ↑ 9.7 ↑ – –
3.9 ↑ 3.6 ↓ – –

(only discourse features)
† Uses only target sentence, ‡ Uses context along with target sentence,
? Uses personality-based features

Table 2: Results on the SARC dataset. Models haveing only ‡ uses
only contextual text for detecting sarcasm.

Bi-ISCA focuses on only using the contextual com-
ment/tweet for detecting sarcasm rather than using any other
topical/personality-based features. Using only the contextual
information enriches the model’s ability to capture syntactical
and semantical textual properties responsible for invoking sar-
casm in any type of conversation. Table 2 reports performance
results on the SARC datasets. For comparison purposes, F1-
score (F1), Accuracy score (Acc), Precision (P) and Recall (R)
were used.

When compared with the existing works, Bi-ISCA was able
to outperform all the models (only ‡) that use only conversa-
tional context for sarcasm detection (Improvement of ∆ 7.9%
in F1 score when compared to [Ghosh and Veale, 2017]; ∆
6.2% in F1 score and ∆ 2.8% in accuracy when compared to
AMR [Ghaeini et al., 2018]), and was even able to perform
better than the models (†?) that use personality-based features
along with the target sentence for detecting sarcasm (improve-
ment of ∆ 7.7% in F1 and ∆ 4.3% in accuracy score when
compared to CNN-SVM [Poria et al., 2016]; ∆ 6.7% in F1
score and ∆ 2.3% in accuracy when compared to CUE-CNN
[Amir et al., 2016]). MHA-BiLSTM [Kumar et al., 2020]
had a ∆ 1.8% higher F1 score in the balanced dataset but
Bi-ISCA was able to show drastic improvement of ∆ 17.6%
in the imbalanced dataset, which demonstrated the ability of
Bi-ISCA to handle class imbalance.

The current state-of-the-art on the SARC dataset is achieved
by CASCADE. Even though CASCADE uses personality-
based features and contextual information along with large
sentences of average length ≈55-62 (very large compared to
our dataset, which gives them the advantage of using a lot
more contextual information), Bi-ISCA was able to achieve
an F1 score comparable to it (despite using relatively short
text). In comparison with CASCADE that only uses discourse-
based features, Bi-ISCA performed drastically better with an
increase of ∆ 9.7% in F1 and ∆ 4.3% in accuracy score for
the balanced dataset.

Bi-ISCA clearly demonstrated its capabilities to robustly
handle an imbalance in the dataset, although it was unable to
outperform both the CASCADE models. This slightly poor
performance in the imbalanced dataset can be explained by
the length of sentences used by CASCADE, which are signif-
icantly (≈5 times) greater than the ones on which Bi-ISCA
was tested. Longer sentences result in increased contextual
information which improves performance especially in the

case of imbalance where little extra information can lead to a
drastic increase in performance.

Models P R F1
Baseline (LSTMattn) 70.0 66.9 68.0
BERT-Large+BiLSTM+SVM [Baruah et al., 2020] 73.4 73.5 73.4
BERT+CNN+LSTM [Srivastava et al., 2020] 74.2 74.6 74.1
RoBERTa+LSTM [Kumar and Anand, 2020] 77.3 77.4 77.2
RoBERT-Large [Dong et al., 2020] 79.1 79.4 79.0
RoBERT+Multi-Initialization Ensemble
[Jaiswal, 2020] 79.2 79.3 79.1

BERT + BiLSTM + NeXtVLAD + Context Ensemble
+ Data Augmentation [Lee et al., 2020] 93.2 93.6 93.1

Bi-ISCA (this paper) 89.4 94.8 91.7

Table 3: Results on the FigLang 2020 workshop Twitter dataset.

Table 3 reports Precision (P), Recall (R), and F1-score (F1)
of different models from the leaderboard of FigLang 2020
sarcasm detection shared task using the Twitter dataset. In
this case, not only Bi-ISCA was able to outperform the base-
line model [Ghosh et al., 2020] (improvement of ∆ 19.4%,
∆ 27.9% & ∆ 23.7% in precision, recall, and F1 score re-
spectively), but was also able to perform comparably to the
state-of-the-art [Lee et al., 2020] with a ∆ 1.2% increase in
recall, which further validates the performance of the proposed
model. Even though all the models other than the baseline in
Table 3 are a transformer-based model, Bi-ISCA was able to
outperform them all.

6 Discussion

1.

2.

3.

4.

Table 4: Attension weight distribution in reddit comment-reply pairs.
Here CcR represents "Comment contextualized on Reply" whereas
RcC represents "Reply contextualized on Comment"; (R) & (L) rep-
resents forward & backward attention.

The attention scores generated by the attention mechanism
makes the proposed model highly interpretable. Table 4 show-
cases the distribution of the attention scores over four sarcastic
(correctly predicted by Bi-ISCA) comment-reply pairs from
the SARC dataset. Not only the proposed model was correctly
able to detect sarcasm in these pairs of sentences but was also
able to correctly identify words responsible for contextual,
explicit, or implicit incongruity which invokes sarcasm.

For example in Pair 1, Bi-ISCA correctly identified explic-
itly incongruous words like "amazing" and "force" in the reply
sentence which were responsible for the sarcastic nature of
the reply. Interestingly the word "traumatized" in the parent
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comment also had a high attention weight value, which shows
that the proposed attention mechanism was able to learn the
contextual incongruity between the opposite sentiment words
like "traumatized" & "amazing" in the comment-reply pair.
Pair 2 demonstrates the model’s ability to capture words re-
sponsible for invoking sarcasm by making sentences implicitly
incongruous. Sarcasm due to implicit incongruity is usually
the toughest to perceive. Despite this, Bi-ISCA was able to
give high attention weights to words like "announces" and
"crashes & security holes". Not only this, but the proposed
intra-sentence attention mechanism was also able to learn a
link between "microsoft" and "m" (slang for microsoft) with-
out having any prior knowledge related to slangs. Pair 3 is
also an example of an explicitly and contextually incongruous
comment-reply pair, where the model was successfully able
to capture opposite sentiment words & phrases like "blind
drunk", "cautious" and "behind the wheel" that made the reply
sarcastic in nature. Pair 4 is an example of sarcasm due to
implicit incongruity between the words, "pause" & "watch",
and contextual incongruity simultaneously between "reported"
& "enjoyable", both of which were successfully captured by
Bi-BISCA.

7 Conclusion
In this paper, we introduce a novel Bi-directional Inter-
Sentence Attention mechanism based model (Bi-ISCA) for
detecting sarcasm. The proposed model not only was able to
capture both intra and inter-sentence dependencies but was
able to achieve state-of-the-art results in detecting sarcasm
in the user-generated short text using only the conversational
context. Further investigation of attention maps illustrated
Bi-ISCA’s ability to capture explicitly, implicitly, and contex-
tually incongruous words & phrases responsible for invoking
sarcasm. The success of the proposed model is achieved due
to the use of character-based embeddings that takes care of
slang/shortened & out of vocabulary words, Bi-LSTMs that
captures intra-sentence dependencies between words in the
same sentence, and Bi-ISCA that captures inter-sentence de-
pendencies between words of different sentences.
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Abstract
With the always increasing availability of sensor
devices, there is constant unseen monitoring of our
environment. A physical activity has an impact on
more sensor modalities than we could imagine. It
is so vivid that distinctive patterns in the data look
almost interpretable. Such knowledge, which is
innate to humans, ought to be encoded and rea-
son upon declaratively. We demonstrate the power
of Markov Logic Networks for encoding uncertain
knowledge to discover interesting situations from
the observed evidence. We formally relate distin-
guishable patterns from the sensor data with knowl-
edge about the environment and generate a rule ba-
sis for verifying and explaining occurred phenom-
ena. We demonstrate an implementation on a real
dataset and present our results.

1 Introduction
With the always-changing physical environments, uncertainty
and incompleteness are innate in them. Context-aware perva-
sive systems have been the centre of research regarding ap-
proaches to modelling uncertain contextual information and
reasoning upon it [Bettini et al., 2010]; moving from low-
level contextual data (i. e., sensors) to higher-level contextual
information, where it is most commonly referred to as “sit-
uation” [Dey, 2001; Gellersen et al., 2002]. Setting up sys-
tems to observe an environment includes deploying probes
(e. g., sensors) tailored to specific situations. Today, such
efforts fell under the terms “internet of things” and “smart
homes”. Many situations are worth identifying using sensors
in a single room, ranging from “is someone present” to “wa-
ter boiling”. Considering an entire home, we may end up
with hundreds of such situations. An office building could
have thousands, increasing dedicated sensors to cover all the
above situations, driving higher economic and maintenance
costs.

A compelling method in such deployments is to use indi-
rect sensing, which is employed when the property in need
(e. g., a situation) is not attainable to direct sense, either due
to sensor malfunctions, connectivity issues or energy loss.

∗Contact Author

In the literature, indirect sensing is interwoven with remote
sensing or sensing from afar [Zhang et al., 2019]. In our
study, we translate indirect sensing to a cooperative model
of sensor fusion [Durrant-Whyte, 1990], where surrounding
heterogeneous sensors capture different aspects of the same
phenomenon (i. e., activity1). Activity is often described by a
specific temporal organisation of low-level sensor data, or as
we call it, a “dimensional footprint”(DF). The low-level sen-
sor data in a DF are the primary source of information used as
evidence to understand and recognise the observed situation.
Such techniques following a bottom-up approach to recog-
nising situations are well-established in the area of context-
aware pervasive computing [Schmidt, 2003]. Dealing with a
concept as the DF requires handling both uncertainty and the
relational organisation. Existing approaches for an indirect
sensing task typically fail to capture such aspects at the same
time.

For the mechanics of an indirect sensing task, recent re-
search targets data analysis techniques employing machine
learning to train complex models labelling the property they
want to infer from the data. For example, in [Laput et al.,
2017] the authors train Support Vector Machine (SVM) mod-
els, in an automatic learning mode à la “programming by
demonstration” [Dey et al., 2004; Hartmann et al., 2007],
with raw sensor data while performing the activity of interest.
The major limitation of such systems is that they use repre-
sentations that are not relatable to humans. In addition, they
do not support explicit encoding of knowledge about the en-
vironment. Background knowledge (e. g., contextual, domain
or commonsense) may describe situations absent in training
data or challenging to grasp and annotate. In addition, apart
from the definition of knowledge, the occurred observables
(i. e., events) in sensor data may be uncertain, as much as the
manifestations of knowledge are (i. e., rules) in an analytical
reasoning process.

We address these limitations by choosing a probabilistic
logic-based approach using an amalgam of Event Calculus
(EC) [Kowalski and Sergot, 1989] and Markov Logic Net-
work (MLN) [Richardson and Domingos, 2006] to model un-
certain knowledge about the relational manifestations of dif-
ferent and heterogeneous sensors reasoning to infer interest-
ing situations. EC drives the modelling task by a set of meta-

1A situation, in that case, is the state of activity.
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rules that encode the interaction between the sensor events
and their effects over discrete time. One of the exciting prop-
erties of EC is that a situation of interest persists over time
unless it gets interrupted by the occurrence of other events.
On the other hand, MLN combines first-order logic and con-
cepts from probability theory to tackle uncertainty, which has
received considerable attention in recent years with applica-
tions in video activity analysis [Cheng et al., 2014], mar-
itime surveillance [Snidaro et al., 2015], music analysis [Pa-
padopoulos and Tzanetakis, 2016] and others. Our goal is
to design a reasoning mode for indirect sensing that han-
dles uncertainty and uses interpretable representations from
data. To this end, we make the following contributions: (1)
We model existing sensor data into interpretable symbolic
representations as elements in a narrative on a running sce-
nario (cf. Section 2.2), (2) design a knowledge base (KB)
within MLN for supporting indirect sensing while emulat-
ing commonsense reasoning, (3) evaluate the realisation of
the approach using an open-source implementation of MLN,
(4) demonstrate how the probability of an occurred situation
changes over time while using different combinations of sen-
sors.

Section 2 provides the terminology used in this document,
including the running example and background information
on Event Calculus and Markov Logic Networks. This leads
to Section 3 where we introduce the concept of DF and how
to model it. In Section ,4 we elaborate on MLN definitions,
while in Section 5, we present the results and experiments.
Section 6 provides a brief related work around the topic of
event modelling and recognition. In Section 7, we summarise
the main contributions and discuss details, including future
work.

2 Preliminaries
2.1 Terminology
The Oxford English Dictionary gives a general definition for
an event as “a thing that happens or takes place, especially
one of importance”. In our context, a “thing” is represented
by a (sensor) data pattern. “Importance” matches the (subjec-
tive) interest in finding an explanation for this pattern. Many
researchers try to use the term event in their way, depending
on the context and the investigated environment, even though
the definition of the word event remains the same.

We assume that an (interesting) event occurred on iden-
tifying a visible change in the sensor data. The identi-
fication involves a pre-processing step using some pattern
extraction techniques [Patel et al., 2002; Lin et al., 2003;
Yeh et al., 2016]. Therefore, the timestamps for the respective
pattern represents the event’s temporality. This work clari-
fies a time point and a series of time points (exhibiting the
concept of duration) bounded by a predefined window value.
For example, the increase in the temperature readings is an
interesting event and reflects the development of sensing data
(temperature) over time. Therefore, a representation should
semantically annotate an event’s time point.

Interpreting symbols as representations of objects is a
proxy to describe something instead of the actual thing. For

example, if something is an ambient “high” temperature2, that
temperature does not reside in our heads when we think of
it. The “it” of the temperature is a representation of the ac-
tual natural environmental property. This representation of
something is an entity that transmits to us the idea of the
real something. Perhaps we think of our discomfort or imag-
ing ourselves reacting to this phenomenon (e. g., sweating) to
represent the high ambient temperature. Alternatively, we use
the colour red accompanied by the temperature degree.

An event representation in our work is a lexical word em-
bedded in a “sentence” among other additional contextual
words, which we understand. Therefore, the development of
sensing data over time (i. e., a time series) is wrapped in a
word that best describes its nature (e. g., data pattern). The
event representation has two lexical parts. The one part is the
trend of the pattern, and the other one is the type of the pat-
tern. The trend of a pattern is represented by the words up-
ward or downward. The patterns we may derive in the sensor
readings could resemble a shape currently named shapeoid.
For the sake of presentation, the lexical shapeoids are the fol-
lowing:

ANGLE A gradual, continuous line with an increasing (up-
ward) or a decreasing (downward) trend in the sensor
readings.

HOP A stage shift in the sensor readings, where the data
have an apparent difference between two consecutive
recognition time points (e. g., binary sensor values).

HORN This pattern is a transient increase or decrease in the
sensor readings curve.

FLAT A horizontal line in the data, with either unchangeable
values in the pattern duration or minimal changes.

We extract the shapeoids using the Symbolic Aggregate
Approximation (SAX) technique. Many time series represen-
tation alternatives exist, but most of them result in a down-
sampled real-valued representation. In contrast, SAX boils
down to a symbolic discretised form of the time series, which
is abstract enough to extract the shapeoids generally. The
paper’s focus is not to describe how to obtain the proposed
patterns from the sensor data but to put forward a concept of
using temporal organisations of such representations to rea-
son in a robust and declarative way.

2.2 Running Example
In Figure 1, we illustrate the activity of opening and closing
a window and its impact (i. e., their DF) on five surrounding
sensor types that happen to be in the same room. Later in
the paper (cf. Section 3.3), we will showcase the extracted
shapeoids from the raw data, which put forward a sufficient
abstraction, serving as an input for a reasoning task.

The data are from a real-world public dataset [Birnbach
et al., 2019], where the authors collected sensor data while
performing different activities. The data timeline spawns over
two minutes, sufficient for demonstrating the essence of our
approach.

2We use a threshold-based term to describe the comfort level for
a human to endure.
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Figure 1: An example of how the activity of opening/closing a win-
dow affects the listed surrounding sensors.

2.3 Event Calculus
Representing and reasoning about actions and temporally-
scoped relations has been a critical research topic in the area
of Knowledge Representation and Reasoning (KRR) since
the 60s [Shoham and McDermott, 1988]. Since then, vari-
ous approaches have been proposed to overcome the Frame
Problem in classical Artificial Intelligence (AI) [McCarthy
and Hayes, 1981; Shanahan, 2006]; the challenge of rep-
resenting the effects of actions. Among them, EC, which
Kowalski and Sergot have initially proposed in 1986 [Kowal-
ski and Sergot, 1989], is a system for reasoning about events
(or actions) and their effects in the scope of Logic Pro-
gramming. It comprises excellent expressiveness with intu-
itive and readable representations, making it feasible to ex-
tend reasoning. It is an adequate tool to fit domain knowl-
edge representing how an entity progresses in time using
events. It has found applications ranging from the scope
of robotics [Russel et al., 2013], game design [Nelson and
Mateas, 2008] and commonsense reasoning [Shanahan, 2004;
Mueller, 2014] to name a few.

From a technical point, the core ontology of the EC in-
volves events, fluents and time points. The continuum of
time is linear, and integers or real numbers represent the time
points. A fluent can be whatever whose value is subject to
change over time. At the occurrence of an event, it may
change the value of a fluent. This could be a quantity, such
as “the temperature in the room”, whose value varies in num-
bers, or a proposition, such as “the window is open”, whose
truth state changes from time to time. In EC, the core axioms
are domain-independent and define whether a fluent holds or
not at a particular time point. In addition, these axioms can
capture what is known as the common sense law of inertia;
formal logic is a way of declaring that an event is assumed not
to change a given property of a fluent unless there is evidence
to the contrary [Shanahan and others, 1997].

We use a simplified version of EC (named MLN-EC),
based on a discrete-time reworking of EC [Mueller, 2008],
which was proven to work in a probabilistic setting [Skar-

Predicate Meaning
Happens(e, t) Event e happens at time t
HoldsAt(f, t) Fluent f holds at time t
InitiatedAt(f, t) Fluent f is initiated at time t
TerminatedAt(f, t) Fluent f is terminated at time t

Axioms
HoldsAt (f, t+ 1)⇐

InitiatedAt (f, t)
HoldsAt (f, t+ 1)⇐

HoldsAt (f, t) ∧
¬TerminatedAt (f, t)

¬HoldsAt (f, t+ 1)⇐
TerminatedAt (f, t)

¬HoldsAt (f, t+ 1)⇐
¬HoldsAt (f, t) ∧
¬ InitiatedAt (f, t)

Table 1: The core predicates and domain-independent axioms of the
EC dialect, MLN-EC.

latidis et al., 2015]. Other dialects may have additional re-
strictions (e. g., complex time quantification) that hinder the
realisation of the approach. For more information, we point
the reader to this paper [Mueller, 2004]. The basic predicates
and the domain-independent axioms are presented in Table 1.
One can read the upper line of two axioms from left to right:
(1) a fluent f holds at time t if it was initiated at a previous
time point, and (2) that the fluent f continues to hold, provid-
ing it was not previously terminated. The domain-dependent
predicates initiatedAt/2 and terminatedAt/2 are expressed
in an application-specific manner guiding the logic behind the
occurrence of events and some contextual constraints. One
example of a common rule for initiatedAt/2 is:

InitiatedAt (f, t)⇐
Happens (e, t) ∧
Constraints[t]

(1)

The above definition states that a fluent f is initiated at time
t if an event e happens, and some optional constraints depend
on the domain. EC supports default reasoning via circum-
scription, representing that the fluent continues to persist un-
less other events happen. Therefore, in our definition of the
event narrative, we assume these are the only events that oc-
curred.

2.4 Markov Logic Networks
A Markov Logic Network (MLN) amalgam of a Markov Net-
work (aka. Markov Random Field) and a first-order logic
KB [Richardson and Domingos, 2006]. Specifically, it soft-
ens the constraints posed by the formulas with weights that
support (positive weights) or penalise (negative weights)
worlds in which they are satisfied. As opposed to classical
logic, all the statements are hard constraints (i. e., preserving
truthfulness).

The formulas, being first-order logic objects [Genesereth
and Nilsson, 1987], are constructed using four symbols: con-
stants, variables, functions and predicates. Predicates and
constants start with an upper-case letter, whereas the func-
tions and variables have lower-case letters. The variables are
quantifiable over the given domain (e. g., type={Temperature,
Humidity} ). The constants are objects in the respective do-
main (e. g., sensor types: Temperature, Air Quality, Micro-
phone etc.). Variables are ranges over the objects of the
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domain. The functions (e. g., downwardAngleTemp) repre-
sent actual mappings from a single object to a value or an-
other object. Finally, the predicate symbols represent rela-
tions among objects associated with truth values(e. g., Hap-
pens(DownwardAngle_Temp,4)).

A KB in MLN consists of both hard- and soft-constrained
formulas. Hard constraints (clauses with infinite weight) are
interwoven with unequivocal knowledge. Therefore, an ac-
ceptable world fulfils all of the hard constraints. By contrast,
the soft constraints are related to the imperfect knowledge of
the domain, which can be falsified in the world’s existence in
discourse. This means that when a world violates a formula,
it is less probable but not impossible.

Formally, a MLN is a set of pairs (Fi, wi), where Fi is a
first-order logic formula and wi is a real numbered weight.
The KB L, with the weighted formulas together with a fi-
nite set of constants C =

{
c1, c2, . . . , c|C|

}
, defines a ground

Markov Network ML,C as follows [Richardson and Domin-
gos, 2006]:

• ML,C has one binary node for each possible grounding
of each predicate in L. The value of the node is 1 if the
grounded atom is true and 0 otherwise.

• ML,C contains one feature for each possible grounding
of each formula Fi in L. The value of this feature is 1
if the formula is true and 0 otherwise. The weight of the
feature is the wi associated with Fi in L.

An MLN is a template for constructing Markov networks:
it will produce different networks given different constants.
The grounding process is the replacement of variables with a
constant in their domain. The nodes of ML,C correspond to
all ground atoms that can be generated by grounding a for-
mula Fi in L, with constants of C. Thus there is an edge
between two nodes of ML,C iff the corresponding ground
predicates are conditionally dependant on a grounding of a
formula Fi in L. A possible world from the MLN must sat-
isfy all of the hard-constrained formulas and be proportional
to the exponential sum of the weights of the soft-constrained
formulas satisfied in this world (cf. Equation 2). Hence, a
MLN defines a log-linear probability distribution over Her-
brand interpretations(i. e., possible worlds).

In an indirect sensing task context, we know a priori that
we will have two kinds of predicates; the evidence variable
X , containing the narrative of real-time input events, trans-
lated with the Happens predicates of EC, and the set of query
HoldsAt predicates Y , as well as other groundings of “hid-
den” predicates (i. e., neither query nor evidence); in EC these
are the InitiatedAt and TerminatedAt predicates. Finally,
the conditional likelihood of Y given X is defined as fol-
lows [Singla and Domingos, 2005]:

P (y | x) = 1

Zx
exp

(∑

i∈FY

wini(x, y)

)
(2)

x ∈ X and y ∈ Y represent the possible assignment of
the evidence set X and the query set Y , respectively. FY

is the set of all MLN clauses produced from the KB L and
the finite set of constants C. The ni(x, y) is the number of
true groundings of the i-th clause involving the query atoms y

given the evidence atoms x. Finally, Zx is a partition function
that normalises for all the possible assignments of x.

Equation 2 shows the probability distribution of the set
of query variables conditioned over the set of observations.
By modelling the conditional probability directly, the model
remains agnostic about potential dependencies between the
variables in X , and any factors that depend on X are elim-
inated. Instead, the model makes conditional independence
assumptions among the Y and assumptions on its inherent
structure with dependencies of Y on X . Therefore, in such a
way, the number of the possible words is constrained [Singla
and Domingos, 2005; Sutton and McCallum, 2006] and the
inference is much more efficient. However, calculating ex-
actly the formula might become intractable even for a small
domain. Consequently, other approximate inference methods
are preferred.

Originally, the authors in [Richardson and Domingos,
2006] propose to use Gibbs sampling to perform inference,
but they found out that the sampling breaks down when the
KB has deterministic dependencies3 [Poon and Domingos,
2006; Domingos and Lowd, 2009]. The authors proposed
another Markov Chain Monte Carlo method called MC-
SAT [Poon and Domingos, 2006] based on satisfiability with
slice-sampling. Another type of inference is the Maximum A
Posteriori (MAP) which described the problem of finding the
most probable state of the world given some evidence, which
reduces to find the truth assignment that maximises the sum
of weights of satisfied clauses (i. e., argmax

y
p(y | x)).

The problem is generally NP-hard, but both exact and ap-
proximate satisfiability solvers exist [Domingos and Lowd,
2009]. In our experiments, we run approximate inference us-
ing the MC-SAT algorithm.

3 Modelling a DF
An activity affects various fundamental environmental prop-
erties, such as speed, pressure, temperature, luminosity, etc.
Surrounding sensors may capture the various changes (form-
ing the activity’s DF), which depends on different contextual
information, such as their proximity from the occurred phe-
nomenon and their type (cf. Section 3.1). In addition, a sen-
sor may observe ambient values (e. g., temperature) or require
manual intervention to observe a change (e. g., separating the
two magnetic elements of a contact sensor) (cf. Section 3.2).

This “change” (i. e., the forming pattern) is the “interest-
ing event” we want to focus on. This observed change mostly
stays unobserved. Thus, the emitted DF indicates its occur-
rence. In addition, its state is a continuous value in time,
which is tracked under the definition of the “fluent”. With
no sensor modality to identify the occurrence of an activity,
due to its unavailability at the given time, or by simply stating
that there does not exist any direct one, we account its DF as
a space with equivalent options that “indirectly” account for
the same activity.

Our work uses commonsense knowledge (CK) to charac-
terise how activity affects its environment. From the running

3They are formed from hard-constrained formulas in the KB.
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example in Section 2.2, some distinct data patterns exist, al-
most as recognisable to the human eye where one may exer-
cise a hypothesis against the data. We consider that a data-
processing step is viable to extract such patterns, but it is out
of the scope of the current paper. The abstracted representa-
tions (cf. Section 2.1) from low-level sensor data reflect their
organisations in shapes and trends (e. g., an increasing angle
in the sensor data). Therefore, one with a naive knowledge
of physics can make hypotheses about the occurrence of an
activity using the abstractions from sensor data as evidence
(cf. Section 3.3).

3.1 Contextual Constraints
Sensors are interfaces that serve as occurrence indicators for
various monitored situations. The sensor numbers could in-
crease accordingly as their numbers increase, making the
instrumentation, deployment and maintenance cumbersome
tasks. A sensor primarily measures an environmental change
as accurate as possible, varying between the different manu-
facturers. Selecting a sensor to monitor a situation ought to
obey some criteria, which formulate the sensing fidelity of its
output. In this paper, we propose the following criteria:

Type There exist different vendors for various sensors.
Nonetheless, the type of sensor is of key importance.
There is no doubt that different manufacturers may offer
a better sensor device, affecting accuracy. Semantically,
the sensor type determines if the sensor participates in
the verification process, not its model.

Location The location is another important aspect of deter-
mining the credibility of the sensor output. Either the
physical location or the position of the sensor in the
space should affect the decision of selecting any sensor
of a given type in a location (e. g., a room).

As discussed later in the paper, the above criteria are mini-
mal constraints for a sensor to participate in reasoning. How-
ever, the sensors have a fundamental high-level classification,
making the shapeoid extraction from their data clearer and
focused.

3.2 Sensor Classification
A sensor is an interface between the physical and the digital
world. The raw sensor data rarely matches human semantics,
but the representations of patterns in them are. The kind of
sensor classification the paper foresees, bases on the nature of
the resulting sensor data, is as follows:

Binary sensors restrict their result to two possible values.
Usually, the values resemble the category itself (i. e., be-
ing binary); thus, one and zero. Furthermore, depending
on the context4 the result may take values from it. For
example, the output of a physical switch is “on” or “off”,
the result of a motion sensor may be “present” or “not
present”, and so on. The suitable data patterns for the
binary sensors are the HOP and FLAT representations.

4Context is any information that one can use to characterise the
situation of an entity. An entity is a person, place, or object consid-
ered relevant to the interaction between a user and an application,
including the user and application themselves [Dey, 2000]

Numerical sensors are almost every sensor with an arith-
metic output in the set of real numbers R. Some ex-
amples of quantifiable sensors are an accelerometer, hu-
midity, temperature, pressure sensor etc.. Accordingly,
the data patterns, which we found in the raw sensor data,
are those of ANGLE, HORN and FLAT.

One could say that a binary sensor is a subset of numerical
sensors. However, we make the distinction explicit, as the bi-
nary sensors are semantically a practical standalone class. In
the running example, we use numerical sensors. The sensor
data’s available observations (i.e., shapeoids) are the simple
events with their respective time point in the focused bounded
time window. We represent them with the Happens predi-
cate, where finally a collection of such predicates form the
so-called “narrative” in EC.

3.3 The Narrative of Events in EC
An event “just” happens, with an accompanied discrete time
point to keep a reference in the timeline. The chosen repre-
sentation of it, according to the dialect of EC, is the predicate
Happens(e, t). Time t can be quantified over the spectrum
of integers, exhibiting coherence among the occurred events.
The events in the sensing timeline are the formed shapeoids,
and by using lexical words for the symbolic representation,
the intuition behind them is human-readable (e. g., downward
ANGLE). For example, in Figure 1, the two activities of open-
ing and closing the window produce an impact in the five sur-
rounding sensors. We observe that around the time of opening
the window, distinct patterns are forming. Figure 2 contains
in separate graphs a more clear view of the data in Figure 1,
after performing a dimensionality reduction step (e. g., Piece-
wise Aggregate Approximation (PAA) [Ding et al., 2008]).
The patterns were extracted empirically, resembling the pro-
posed lexical shapeoids (cf. Section 2.1):

. . .

Happens(Flat_Mic,3)
Happens(Flat_Hum,3)
Happens(DownwardAngle_Temp,4)
Happens(DownwardAngle_Aq,4)
Happens(UpwardHorn_Mic,4)
. . .

Happens(UpwardHorn_Temp,11)
Happens(UpwardAngle_Hum,11)
Happens(Flat_Mic,11)
. . .

Happens(DownwardAngle_Temp,14)
Happens(DownwardAngle_Pres,14)
Happens(Flat_Hum,15)
Happens(UpwardHorn_Mic,15)
Happens(UpwardAngle_Temp),15)
. . .

(3)
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Figure 2: The z-normalised sensor data (in 20 data points) from Figure 1, after a dimensionality reduction step.

4 Probabilistic Indirect Sensing via MLN
definitions

.
In the following, we elaborate on constructing the KB con-

taining the representations of the sensor events, using contex-
tual words in “sentences” that comply with the formalism of
EC and are expressed in first-order logic.

4.1 Knowledge Base
For our purposes, the KB, or the so-called “theory”, contains
a few function definitions, predicate definitions, as well as the
inertia laws axioms of EC5 as seen in (2). We consider the
observed patterns as a continuous narrative of Happens pred-
icates (cf. (3)). InitiatedAt and TerminatedAt determine un-
der which factors a fluent is initiated or terminated at a given
time point, using the form in (1). Finally, the query predicate
HoldsAt incorporate a possible quantification over the verifi-
cation of a monitored situation (i. e., a fluent).

Table 2 shows a fragment of the KB and the associated
weights. The formulas are converted to a clausal form dur-
ing the grounding phase, also known as conjunctive normal
form (CNF), a disjunction of literals. The next step is the
replacement of the variables with the constants, which for-
mulate grounded predicates. As such, the construction of the
Markov Network consists of one binary node V for each pos-
sible grounding of each predicate. A world is an assignment
of a truth value to each of these nodes.

The definition of the indirect sensing rules follow CK rep-
resented as a theory in MLN enacting it as part of common-
sense reasoning (CR)6; the sort of reasoning people perform
in daily life [Mueller, 2014], which is vague and uncertain.
For example, the Table 2 contains two separate rules, which
reflect an atomic instruction of the DF, using a temperature
sensor and a microphone. For our purposes, we consider that
the events in the narrative are the only one occurred.

A rise in the temperature readings, or a sudden spike in the
sound pressure levels, could be anything in an open world,
including the opening/closing of a door in a room. However,
with the help of context, we may exercise the hypothesis that
a temperature sensor close to the window could indicate its

5They should remain hard-constrained; otherwise, the recogni-
tion of the situation will converge to be uncertain up to the horizon
of probability.

6CR is implemented as a valid (or approximately valid) infer-
ence [Davis, 2017] in MLN as part of the EC law of inertia.

state. The hypothesis is asked in the form of a query, rep-
resenting the probability for the situation of an opened win-
dow to be true for the given observations (i. e., ground truth).
For example, if we require to encode an “opened door”, we
may include the same rule with a lower weight encoding our
confidence for the result. Then, using the background knowl-
edge that the sensors are closer to the window, we encode this
with a higher weight value to the opened window rule. MLN
has many learning algorithms [Richardson and Domingos,
2006] to determine the weight assignment; however, as we
do not intend to select the absolute probabilities of a specific
occurred situation, we opt for the most likely situation given
the evidence.

4.2 Evidence
The evidence contains ground predicates (facts) (e. g., the nar-
rative of events in Section 3.3) and optionally ground function
mappings. A function mapping is a process of mapping a
function to a unique identifier. For example, the first formula
in Table 2 contains the function downwardAngleTemp(r).
During the grounding phase, constants from the domain of
the variable r substitute it7. Thus, a function mapping could
be the following: DownwardAngle_Temp_LocA = down-
wardAngleTemp(LocationA). All the events of the grounded
Happens predicates in Section 3.3 follow the same procedure
for their function mappings.

5 Experiments and Results
In this section, we evaluate our approach in the domain of
smart homes. As presented in Section 2.2, we use a publicly
available dataset. The data timeline spawns over twelve con-
secutive full days. The dataset was in a zip format, which
contains multiple comma-separated value (CSV) files with a
total size of approximately 50 Gigabytes (GB)8. We selected
one device close to the interest situation (i.e., close to the win-
dow). We extracted the relevant data points using the five
sensors capturing the DF of opening/closing the room’s win-
dow. We do not process the raw data points, but instead, we
use the shapeoids from the data; their extraction was possible
via our tool Scotty9. The total number of shapeoid events are
4393, where the ground truth events from the window contact
sensor are 87.

7We assume a single room and its context is not reflected in the
naming scheme of the function.

8The actual size of the raw data exceeds the 250 GB.
9This work is meant to be published in a forthcoming conference.

Twelfth International Workshop Modelling and Reasoning in Context (MRC) @IJCAI 2021 46

Copyright c© 2021 for this paper by its authors. Preliminary version, please do not redistribute.



FOL formula Weight
InitiatedAt (openedWindow (r) , t)⇒Happens (downwardAngleTemp (r) , t)∧

Happens (flatTemp (r) , t− 1)
2.1

InitiatedAt (openedWindow (r) , t)⇒Happens (upwardHornMic (r) , t)∧
Happens (flatMic (r) , t− 1)

0.2

Table 2: An excerpt of the first-order KB and the corresponding weights in the MLN.

Scenario Description Duration
S#1 Two sensors with weak and strong

weights.
1 m 45 s

S#2 Three sensors with one weak and
two strong weights.

1 m 9 s

Table 3: The described scenarios with their inference duration times.
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Figure 3: F1 scores using various threshold values for the situation
recognition of the opened window.

We put forward two scenarios (cf. Table 3), which contain
rules for declaring the alternatives in recognising the situation
of an opened/closed window. The purpose of the scenarios
is to run the computation against the existing narrative with
the discovered events but using different sensor compositions.
Each recognition rule also contains a weight value, which was
empirically assigned, as we consider them confidence values
of the rule.

We implemented the KB and the narrative evidence file
to demonstrate the approach’s feasibility using an open-
source implementation of Markov Logic Networks, named
LoMRF [Skarlatidis and Michelioudakis, 2014]. Together
with the domain-dependent rules for each scenario, the full
KB and the evidence file are publicly available online10, en-
abling the reproducible results. The KB, given the evidence,
is transformed into a Markov Network of 26353 ground
clauses and 13177 ground predicates. We run marginal in-
ference from the developed MLN on vanilla runs without any
interference from other processes. All the results are averaged
over five runs with a corresponding standard deviation. The
experiments are executed on a virtual machine(VM) running
in a self-hosted data centre at the University of Ulm running
on OpenStack under the series “Victoria”. The VM runs with
8 cores (16 threads) and 16 GB of RAM.

10https://osf.io/n3ury/

Scenario TP TN FP FN Precision Recall F1

S#1 288 2039 174 1892 0.6234 0.1321 0.2180
S#2 1016 1554 659 1164 0.6066 0.4661 0.5271

Table 4: Performance results using the marginal inference and a
threshold of 0.6.

In the experimental analysis, we present the results for the
marginal inference in terms of F1 score for a range of thresh-
olds between 0.0 and 1.0. We consider the situation recog-
nition task successful with a probability above the specified
threshold. In Table 4, we present a snapshot of the perfor-
mance using the threshold value 0.6 in terms of True Posi-
tives (TP), True Negatives (TN), False Positives (FP), False
Negatives (FN), Precision, Recall and F1 score.

The scenarios have a certain flavour. The basic intuition
from the experiments is to showcase that we may use sen-
sors that have an obscure interpretation (e. g., a spike in the
microphone can be anything, even being next to the win-
dow) and sensors that act as a more direct verification step
(e. g., air quality, temperature). We assume that the shapeoid
events are the only ones that happen in the environment in fo-
cus. More alternative sentences may be encoded accordingly,
using shapeoids of the humidity or the air pressure sensor.
Based on the inertia laws of EC, the fluent start to hold at
the time point t+1, and therefore the assignment to the next
time point from the used pattern event in the narrative (3). In
Figure ,3 the F1 score is higher for the marginal inference in
S#2 due to the additional strong sensor. The S#1, similar to
S#2, contains a shapeoid in the microphone data (increasing
horn), which matches both the fluent’s initiation and termina-
tion rules. Hence, during the inference process, the probabil-
ity always strives towards 0.5, which is regulated by another
sensor in the rules (air quality sensor) with a higher weight
value.

We note here that in a real setting, the verification of situa-
tion (i. e., the fluent) depends on whether the required obser-
vation is made (e. g., the shapeoid event from the temperature
sensor), which may be a delayed effect of the activity itself
- in other words: it takes some time until the open window
affects the temperature sufficiently. In the experimental anal-
ysis, we calculate the performance measures strictly based on
the time range of an opened window. Therefore the ground
truth is the single point of reference for calculating the perfor-
mance. The delay between the activity and its observable DF
should be accounted for a more accurate timing prediction.
We observe a considerable amount of FP, which indicates a
plausible calculation of an opened window but with a certain
recognition delay. Thus, we consider the F1 scores in the
scenarios to be slightly higher.
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6 Related Work
Research in context modelling, context reasoning, and their
unified view via various middleware systems is tremendous;
for a recent survey, we point the reader to [Perera et al., 2013].
In the paper, we focus more on a bottom-up approach to the
recognition of occurred situations. We employ a probabilis-
tic rule-based approach, using occurred sensor events as evi-
dence for the reasoning task.

In [Liu et al., 2017], the authors create a bottom-up hierar-
chical model using the raw sensor data as evidence while cre-
ating inference rules encoded in an MLN to recognise com-
plex events. In order to create abstractions from the raw data,
they use various thresholds per sensor type. In our approach,
we use generic template abstractions which base on the data
shapes and trends. The core contribution of their paper is
the dynamic assignment of weights learned from a training
dataset; we do not assume that the user has a training dataset
to learn the weights from because we use them as confidence
values for the inference rules. Finally, in our paper, we fore-
see scalability issues that may arise from the free variables
in the MLN rules, which may drive the computation times to
higher levels.

Considering our choice for a rule-based reasoning tech-
nique has a broad spectrum of applications to many domains,
making it a commonly used technique [Perera et al., 2013].
Another interesting technique, which bases on previously ac-
quired knowledge, is case-based reasoning (CBR) [Aamodt
and Plaza, 1994; Biswas et al., 2014]. It offers solving mech-
anisms by adopting solutions that have been suggested to sim-
ilar issues in the past. The authors in [Kofod-Petersen and
Aamodt, 2003] use CBR to understand an occurred situation
based on available contextual information. A case-based so-
lution is not favourable in our case because collecting and
maintaining previous cases is a cumbersome task. Our work
does not require any previous known input from sensor ob-
servations and domain-dependent knowledge during the rule
specification.

In the paper, we focus on finding alternatives for recognis-
ing a situation. Similarly, Loke [Loke, 2006] advocates that
the situation in_meeting_now has different recognition ways
based on contextual cues. The author follows an abductive
treatment of the subject as we also do. In the forthcoming
years, the author developed a formalism to represent compo-
sitions of sensors that can act on an understanding of their
situations [Loke, 2016].

Finally, although sensing data contain implicit information,
explicit domain knowledge is required for situation recogni-
tion. Many research works employ logic-based models for
situation recognition in smart homes, such as the Event Cal-
culus (EC) [Chen et al., 2008]. Other works have also em-
ployed EC in activity recognition from video streams [Artikis
et al., 2014] and health monitoring [Falcionelli et al., 2019].
However, it is unclear how they move from the raw data to
the tagged symbolic representations in these systems.

7 Conclusion & Discussion
In the paper, we employed Markov Logic Networks for the
modelling and reasoning over uncertain alternatives for the

method of indirect sensing. We use the temporal formalism of
EC as a “linchpin” for driving the reasoning about the sensing
objects and creating observations for the occurrence of certain
situations (e. g., “is the window open”). The concept of the
DF allows using different sensor setups to monitor the same
situation(s). In other words, it is parallel to interpreting the
given evidence (e. g., sensor data) for finding the most likely
explanation, which created the DF. As such, we declare these
logical “inference” sentences in a human-readable form of
reasoning that incorporates commonsense logic.

Due to the nature of environmental situations, the interpre-
tation (i. e., evaluation) of such sentences depends on the full
context. For example, the same sentence in Table 2 might
not apply if the weather outside is warmer than the sensor’s
environment. In this case, the temperature may not decrease
but stay the same or even increase. Therefore, one will never
evaluate the according to sentence to true. Instead, a fall-
back to another sensor is needed. Nevertheless, the approach
defends the redundancy, or alternatives, in detecting the de-
sired situation, considering that we usually use direct means
for sensing (e. g., use a contact sensor to detect if the door is
open).

The lack of sensors to capture the whole DF of activity
leads to an incomplete “view of the world”. The question
thereby is, which physical effects are of specific relevance for
interpreting an event and omitted. These conditions may vary
enormously between different events, e. g., a person speaking
or the sun rising both have other effects on the environment
and thus (to a degree) require various sensors for interpreta-
tion, but also both could be observed using additional infor-
mation: sound, visual, temperature, time etc.

Concerning the employed method of MLNs, there is an is-
sue using predicates with free variables in the body of a rule;
during the grounding phase, it creates a disjunction of the
cartesian grounded conjunction of the formulas, translating
these variables to existentially quantified leading to a possi-
ble combinatorial explosion. We consider any additional con-
straint in a domain-dependent rule should contain as variables
only the time t and the location r. Any knowledge engineer
should follow this and remove any existentially quantified
variables, using the technique of skolemisation [Broeck et al.,
2013], overcoming this limitation for the solution’s scalabil-
ity.

Finally, the observed data patterns may also result from
multiple overlapping activities challenging to separate, such
as speaking in traffic, leading to uncertainty about the inter-
pretation. As future work, we want to overcome the limita-
tions of MLN concerning the free variables in the rules and
concentrate on a dynamic ecosystem that realises the pro-
posed work.
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Abstract
The paper presents the design of a game that will
serve as a research environment in the BIRAFFE
series experiment planned for autumn 2021, which
uses affective and personality computing methods
to develop methods for interacting with intelligent
assistants. A key aspect is grounding the game de-
sign on the taxonomy of player types designed by
Bartle. This will allow for an investigation of hy-
potheses concerning the characteristics of particu-
lar types of players or their stability in response to
emotionally-charged stimuli occurring during the
game.

1 Introduction and Motivation
Affective Gaming (AfG) [Lara-Cabrera and Camacho, 2019]
is an area of research concerned with how games can measure
and detect player emotions, and then use this information to
adapt the game environment accordingly. If these modifica-
tions are also aimed at directing the player’s affective state,
e.g., towards specific emotions desired at a given stage of the
game, then one can call this an affective feedback loop in
which the game and the player interact (see Fig. 1).

Figure 1: Affective game feedback loop [Lara-Cabrera and Cama-
cho, 2019].

Studies in the AfG area do not just focus on entertainment.
It can also be part of research projects concerning educa-
tion [Dormann et al., 2013] or the design of intelligent assis-
tants, as in the BIRAFFE series of experiments [Kutt et al.,

∗Corresponding Author

2021a]. In the latter case, games are used as a fully control-
lable experimental environment that allows for accurate mon-
itoring of the user’s interaction with the system [Żuchowska
et al., 2020]. This is possible due to the similarities in human-
in-the-loop [Nunes et al., 2015] and affective loop interaction
schemes. However, in order to extend the results of AfG re-
search to interaction models of intelligent assistants in the fu-
ture, careful game design and a system for logging the whole
game context are required [Kutt et al., 2021b].

The notion of context is understood as a component of
emotion, according to the theory proposed by Prinz [2006].
In this view, context is anything that allows one to interpret
a particular physiological activation and give it an appropri-
ate interpretation. In the BIRAFFE series of experiments, the
primary contextual information is behavioral data describing
the interaction with the system/game – both the user’s ac-
tions and the stimuli appearing in the system/game. In ad-
dition, demographic information (gender, age) and personal-
ity profiles are collected. Ultimately—when we move from
a game-based experimental environment to real-world intel-
ligent assistants—external sources of context, e.g., calendar
data, current weather, will also be used. Importantly, once we
have refined the low-level context storage mechanisms de-
scribed in this paper, we also plan to attempt to derive higher-
level context from them, e.g., instead of relying on changes
in the position of individual characters in the game, we will
operate on the information “the player is attacking an enemy”
or “the player is running away from an enemy” instead.

This paper summarises the work carried out to prepare
the game for the third experiment in the BIRAFFE (Bio-
Reactions and Faces for Emotion-based Personalization) se-
ries. The motivation for developing the game in question was
twofold. The first intention was to improve the experimen-
tal environment based on lessons learned from previous stud-
ies [Kutt et al., 2021a; Kutt et al., 2021b], in particular to pro-
vide a more accurate game context logging system. The sec-
ond motivation was to extend the game design to include dif-
ferent types of interaction for different types of players. Com-
bining information on the said types with personality profiles
and physiological characteristics—obtained in all BIRAFFE
experiments—will enable broader analyses that could lead to
the identification of a set of characteristics for each type of
player. It will also allow to investigate if and how the types
and characteristics of users change during the course of the
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game.
The rest of the paper is organized as follows. In Sect. 2,

Bartle taxonomy of player types is introduced. The design of
the game with multiple paths for all player types is discussed
in Sect. 3. Then, in Sect. 4 the set of logged contextual infor-
mation is described. The paper is concluded in Sect. 5.

2 Bartle Taxonomy
The Bartle taxonomy [Bartle, 1997] is created on a 2D space,
where the X axis is described as “Player – World”, meaning
the involvement of real people instead of non-playable char-
acters (NPC) or world exploring in any way possible. The Y
axis is set as “Acting – Interacting”, which directly implicates
the preference for acting or interacting. Each quarter of the
space defines a different type of player as presented on Fig. 2.

Interacting

Players World

Acting

Socializers Explorers

AchieversKillers

Figure 2: Bartle’s taxonomy of player types [source: https://en.
wikipedia.org/wiki/Bartle_taxonomy_of_player_types].

The achievers’ goal is to act within the world. They wish
to master the game, find the best possible weapon, get all the
points (or achievements). People who take care about ranking
and hierarchy can be considered achievers, therefore every
competitive player is most likely an achiever. Another famous
concept for achievers playing type is grinding – playing a
game as long as it requires to get a desired outcome [Hilgard
et al., 2013].

Explorers start at simple exploring a topology of a game
(breadth) and end at breaking the laws of in-game physics
(depth), searching and using bugs. They are interested in in-
teracting with the world. This player type is searching for
knowledge and likes to be praised by others for having it.
While game glitches are fun, players who like to find a spe-
cific, unique places and interesting features are also consid-
ered explorers. Additionally, speed-runners can also be la-
beled as a mix between achievers (if ranking is involved) and
explorers.

For socializers, the most important part of the game is
community and people, relations with them and interactions.
They love to talk, sympathize and joke with others and appre-
ciate the significance of interacting with players. For some
socializers, observing the gameplay is enough. For others,

some minor exploration can be included, in order to under-
stand what other person is referring to. The act of killing is
not required nor wanted for such a person to have fun. For
single-player games, the socializer can be more entertained
by making interesting NPC’s with interesting backstory, mul-
tiple dialogue options and arcs, thought-provoking and en-
gaging plot can be enough for socializer too.

Killers are a very specific, narrow group of people. Inten-
tions behind a mind of a killer are clear to some extent. They
enjoy being superior and high in hierarchy, however this is
not in the same nature as achievers. Killers tend to do things
they wouldn’t normally do in real life, varying from punch-
ing a person to brutal murder. They also cherish the fact that
they can do something to real human, who feels emotions
and reacts, instead of NPC. Enjoyment comes from acting on
people. Killers see other people, especially achievers, who
can face the challenge, as their prey.

3 Game Design with Multiple Paths for
Bartle’s Player Types

The main goal of the game is to use the knowledge of player
types in order to get closer to creation of a truly affective ex-
perience. As the BIRAFFE3 experiment is aimed to check
the associations between the gamer’s personality traits, phys-
iological characteristics and in-game decisions (as introduced
in Sect. 1), the proposed game provides an open world with
as much non-linearity as possible [Gary, 2018]. The affectiv-
ity of the game has also been taken into account in the de-
sign – important choices will be accompanied by emotionally
evocative stimuli, both sounds and images.

This game is fairly different than previous ones [Kutt et
al., 2021a; Żuchowska et al., 2020], as it provides a pleas-
ant gaming experience – something for everyone, no matter
if a skilled player or casual person with no gaming back-
ground. Multiple point-increasing interaction systems have
been introduced, such as dialogues with in-game characters
(see Fig. 3). The story of each character is very simple, but
rewarding enough to keep it entertaining for a subject [Torta
and Minuty, 2017]. Some tasks and quests can be done for
NPCs, mostly in a cute-bubbly way. In order to achieve that,
all interactable, pickable objects have a type – consumable,
plot, weapon or non-consumable. The next important inter-
action type is attack, which allows to kill an NPC or an animal
in game with a previously found and equipped weapon item.
It is important to notice that there is no difference in points
added, whether the action is peaceful or not, the outcome in
terms of points is always the same.

The sole purpose of the aforementioned affective pictures
and sounds is to induce certain emotions in players, and see
their reactions – the images and sounds will be displayed af-
ter some actions have been made. One of the most important
activities, resulting in revealing a questionable image and/or
sound, is chest opening. Opening such a special chest is one
of many ways to gather points, however there is a trick to
it. There are three types of chests: one with pleasant sounds
and images, second one with 50:50 ratio to get a pleasant or
disgusting image, and the third one which always displays
an unpleasant, gore image. Every chest varies in terms of
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Figure 3: Dialogue with the NPC.

Figure 4: Information about completed achievement.

amount of points it gives, which may result in an interesting
insight on the subject’s importance of points and horrible im-
age watching. Of course, some people might not be interested
in gathering points in the first place, which creates a challenge
to overcome, as the images are a crucial part of affective ex-
perience. As far as Bartle taxonomy is considered, all types
of gamers will find a way to see an affective image and hear a
sound on a regular basis during the gameplay. Another ways
to get the subject to look at such a picture include display-
ing an UI interface by talking with non-playable characters
or reading boards and interacting with objects. After some
random number of lines of text has been displayed, an image
will be displayed in the background, however there will be no
points for that, and the image will be random. Additionally,
when achievement is unlocked by the player, depending on
its type, a pleasant or undesirable sound will be played.

The whole game design was made specifically with a view
to pursue the characteristics of each player type from Bartle
taxonomy. Achievers can find multiple weapons and gather
points, look up into current statistics and collect achievements
for certain actions. The amount of points gathered thorough
the game is being shown all the time in top left corner of the
screen. Achievements on the other hand, are only displayed
with the moment of completion (see Fig. 4). The first achieve-
ment will be very simple, in order to show that achievement
gathering is possible, triggering some emotions in subjects
with particular tendencies. Explorers will be interested by
searching for hidden objects on the map and exploiting the
mechanics, as some places have intentionally placed “bugs”
as easter eggs. One of those bugs is an askew collider for
map. In the bottom left corner of the game, there is a pos-

Figure 5: Intentionally placed “bug” in collider, allowing to get out
of the map.

Figure 6: Hidden board placed out of the map as an “easter egg”.

sibility to get out of the map (see Fig. 5) and find a hidden
board with a nice message written on it (see Fig. 6). As for
socializers, NPC are introduced, with their own backstories
and problems to solve. Action with an NPC triggers an UI
with dialogue options (see Fig. 3), allowing to know the char-
acter better and have a conversation. Killers can find pleasure
in killing everybody around and committing acts that would
be considered illegal or immoral in real life.

Technically, according to the assumptions made, the game-
play time should last 15 minutes. After that time, the game
will end and proceed with the experimental procedure (as in
other BIRAFFE experiments, see, e.g., [Kutt et al., 2021a]).
There is no possibility to finish game earlier, however there is
nothing that keeps the subject from just standing in place for
15 minutes and stare blankly at the screen. The whole game
was developed with the Unity Engine (https://unity.com/).

4 Logging System
To conduct a study based on such game, a suitable log
handling had to be added. Similarly to the previous re-
search [Kutt et al., 2020], logs are created for each subject,
based on their ID defined at the beginning of the experiment.
A proper directory is created, along with all files about the
game. During the gameplay, data containing current state of
the player an the progress is being gathered with 10 Hz fre-
quency. A log with an ID of subject as the name is written
into JSON file and is being saved in application persistent
data path. Such a log consists of various information about
current state of the game:

1. Timestamp,

2. Location – both X and Y coordinates and area,

3. List of unlocked achievements,

4. Amount of interaction button clicks,
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Figure 7: Trigger colliders for area logging information.

5. Number of interactions with unique objects,

6. List of particular milestones for NPCs tasks and dia-
logues,

7. If talking – name of the NPC, else an empty string,

8. Amount of killed NPCs,

9. Current equipped weapon,

10. Points and health,

11. List of items gathered,

12. List of opened chests,

13. ID of played sound and image.

The log file can be separated into groups. The first two
items (items 1-2 on the list) are purely about the position over
time of the protagonist, which may help with visualization
or classification of commonly walked places in game. The
“area” is a term describing important places in the world iden-
tified by arbitrarily prepared colliders (see Fig. 7). Second
group (items 3-12) contains the characteristics of players be-
havior – did the protagonist gather achievements? Was s/he
talking with NPCs? Maybe the subject was killing them? If
so, with which weapon? How many points were gathered,
etc. This section of logging system is supposed to help in
analysis the most, as the heart of information about a pattern
of playing. The last item (13) is for affect-related analyses –
the ID of sound and image displayed after event.

Another log file contains the data about current state of the
world. The characters are moving all the time, therefore their
location needs to be written down as well – the position of
each character can have an impact on each gameplay.

Finally, the last file, which is the same for all players, is
the static map of the game world. It consists of information
about the starting position of items, colliders, houses, etc. It’s
purpose is to allow for possible future visualization of events
and analysis of collider interactions between the player and
the world.

Keeping the Bartle taxonomy in mind, the log can be
also separated into items related to specific gamer types. In
terms of achievers, the information about points gathered and
achievements unlocked is written, along with particular mile-
stones for NPC’s quests. The latter can also be used as a
socializer trait, which is why the data on dialogue options
clicked is also being saved – who was the player talking to.
As for the explorers, the amount of unique objects interacted
with together with the amount of interaction button clicks,
chests opened and list of items is written into the file. Finally,

for the killers, the data on the amount of NPC killed and type
of equipped weapon is logged.

5 Summary and Future Work
The BIRAFFE series of experiments, which has been run-
ning for several years, focuses on the development of interac-
tion models for personalised intelligent assistants based on a
range of contextual information about the user: physiological
signals collected with low-cost wearable devices, personality
assessment, behavioural data describing the interaction with
the system, and external sources of context (such as current
weather conditions). A means to the goal is to use games as
a stimulus-rich yet fully controllable experimental environ-
ment.

This paper presents the design of a new affective game
to be used in the BIRAFFE3 experiment, scheduled for au-
tumn 2021. In addition to addressing the weaknesses found
in previous games, a new contribution of using Bartle’s taxon-
omy during interaction design is introduced. This will enable
post-experimental analyses focusing on determining the char-
acteristics of specific user types or investigating the stabil-
ity/variability of player type in response to positive/negative
stimuli associated with their in-game interactions. We be-
lieve that inclusion of Bartle player types into both the design
of the affective game, as well as data analysis about player
interaction with it, provides a new and important source of
context.

Finally, the post-experimental analyses will also focus on
creating a catalogue of interaction patterns, which will be the
basis for creating an improved version of the game, allowing
the gameplay to adapt to the player’s emotions, i.e., imple-
menting a full affective game feedback loop. This will thus
allow a transition from a “Detection and measure” approach
to an “Integral approach” according to the Lara-Cabrera and
Camacho’s taxonomy [2019].
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