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Abstract
The development of Artificial Intelligence for healthcare is of great importance. Models can sometimes achieve even superior
performance to human experts, however, they can reason based on spurious features. This is not acceptable to the experts
as it is expected that the models catch the valid patterns in the data following domain expertise. In the work, we analyse
whether Deep Learning (DL) models for vision follow the histopathologists’ practice so that when diagnosing a part of a lesion,
they take into account also the surrounding tissues which serve as context. It turns out that the performance of DL models
significantly decreases when the amount of contextual information is limited, therefore contextual information is valuable at
prediction time. Moreover, we show that the models sometimes behave in an unstable way as for some images, they change
the predictions many times depending on the size of the context. It may suggest that partial contextual information can be
misleading.
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1. Introduction
Deep Learning (DL) models are perceived as black-boxes.
They sometimes make decisions based on different rea-
sons than humans do. DL models tend to take shortcuts
and follow spurious correlations [1]. The popular exam-
ple is the case where the model misclassified a husky as
a wolf because there was snow in the background, which
was a rule in the case of images with wolves within
the dataset [2]. Although following such a rule may
lead to high classification performance (if the dataset
is biased), we expect the model to distinguish between
wolves and husky dogs based on the animal features. Mo-
tivated by the fact that there is sometimes a mismatch
between the way DL models and humans reason, we de-
cided to investigate whether the DL models for vision
follow the same good practices when diagnosing lesions
based on histopathological data as expert histopatholo-
gists. The histopathologists when diagnosing a particular
region of a lesion, take into account also the surrounding
tissue [3]. We investigate whether the classification per-
formance of DL models for vision will be higher when
they have access to information about neighbouring tis-
sues than in the case where no contextual information
is given. We conduct a quantitative analysis on how
the amount of contextual information within the input
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to the models impacts the final performance. Our contri-
bution is as follows:

• we verify whether DL models for vision behave
in a similar way to histopathologists who benefit
from contextual information when diagnosing
lesions

• we measure quantitatively the impact of
the amount of contextual information provided
to different DL models for vision on their
classification performance

• we investigate whether it happens that the models
behave in a non-stable way by changing predic-
tions for the images many times given different
amounts of contextual information

Figure 1: The scheme of the proposed study. The yellow
squares in the center of histopathological images depict the re-
gions that the annotations are based on (the squares are shown
only for visualization purposes and are not present in dataset
images). The black border is applied to remove some parts of
contextual information.

The code to replicate our results is available at
https://github.com/ptomaszewska/PCam_context.
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2. Motivation
The histopathological data is saved in the form of Whole
Slide Images (WSIs) where the whole lesion is under
huge resolution. In the popular Camelyon16 Breast Can-
cer dataset [4] the images have an average resolution of
94,747x188,764 (avg. size of 1.97GB). Such huge images
are difficult to load into memory and process, therefore
they are most commonly split into smaller-sized patches.
The advantage of WSIs is that based on them both lo-
cal (cell-level) and global (tissue-level) analysis can be
performed. In the work, we use the variant of the Came-
lyon16 dataset, PatchCamelyon (PCam) [5], where the ini-
tial WSIs are cut into patches of size 96x96. Each such
patch has a label - normal tissue or tumour lesion and
the model’s task is a binary classification. However, in
such a dataset, the global context is not preserved as
the relationship between neighbouring patches is lost.
Nevertheless, the dataset contains local context within
images since the label is assigned to the whole patch only
based on the central 32x32 region of the patch. There-
fore, the surrounding box can be thought of as contextual
information. The question is whether contextual infor-
mation is useful when making predictions.

3. Method
The goal of the study is to check whether the DL models
for vision are sensitive to different amounts of contextual
information within input histopathological images. First,
we use the test set of the PCam dataset as input for infer-
ence to the already trained models on the original PCam
dataset. The resulting performance metrics serve as a ref-
erence point when the full available context is provided
to the model (𝑎𝑐𝑐𝑟𝑒𝑓 , 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑟𝑒𝑓 , 𝑟𝑒𝑐𝑎𝑙𝑙𝑟𝑒𝑓 , 𝐴𝑈𝐶𝑟𝑒𝑓 ).
In the following experiments, we restrict the amount
of contextual information in the image data. Let us de-
fine, the size of context (𝑠) as a width in pixels of the
area around the central 32x32 square. The maximum
size of the context is (96 − 32)/2 = 32 where 96 is the
length of the original image’s side. The bigger the context
size, the more information about the neighbouring tissue
is provided to the model. To evaluate how the size of
the context impacts the model prediction, we remove ex-
ternal layers of pixels of the context area and the image is
padded to the original size of 96x96 with black pixels (we
call it a border for brevity). We decided to use the black
colour as it is often used as a baseline colour in explain-
able AI (XAI) methods i.e. Integrated Gradients [6]. We
applied the border to the images to obscure some part of
the context instead of cutting off the pixels and changing
the image resolution to avoid a situation where it would
be difficult to disentangle the source of the performance
change - increased resolution vs. limited context size.

The images padded with a black border are the input
to the DL models. We analyse the difference between
the metrics obtained on padded images and the refer-
ence, original ones. This will give us information on how
much contextual information is beneficial when making
predictions.

Figure 2: The histopathological image padded with black
border with dimensions specified. The dimension s denotes
context size.

4. Experiments

4.1. Deep Learning models
We apply the method described in Section 3 on two
classes of DL models - convolutional (ResNet18 and
DenseNet121) and transformer-based (Swin [7] and
ViT [8]). The convolutional models trained on histopatho-
logical data (without any image standarization) were
taken from [9]. In the case of the transformer-based mod-
els, we took the models pretrained on Imagenet. The Swin
model was pretrained in a supervised manner, whereas in
the case of ViT, we used the models pretrained in differ-
ent schemes: supervised (called supViT for brevity) and
unsupervised (contrastive - MoCo [10] and autoencoder-
based - MAE [11]). We applied end-to-end finetuning
using the whole PCam training set. As the pretrained
transformer-based models operate on an input size of
224x224 and the images within PCam dataset are of size
96x96, we applied resizing (as it is done in [12]). We did
not apply any standarization to keep the same preprocess-
ing procedure as in the convolutional models. The hyper-
parameters such as base learning rate (lrbase) and weight
decay (wd) were the same as the ones used by the authors
of [12] (details in Table 1). Compared to the paper, we
decreased the batch size from 128 to 64 and shortened the
training procedure. The base learning rate was linearly
scaled using the formula 𝑙𝑟 = 𝑙𝑟𝑏𝑎𝑠𝑒 ∗ 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒/256 [13].
The models were finetuned for 5 epochs with Adam opti-
mizer and with a linear learning rate scheduler increasing
to the final 𝑙𝑟 value. We took the model from the epoch



that resulted in the biggest accuracy on the validation
set. The fact that a small number of epochs was enough
to achieve satisfactory accuracy was due to the big size
of the training set (262,144 samples).

Table 1
Hyperparameters used for finetuning of transformer-based
models on PCam dataset.

model lrbase wd
Swin 0.0001 0.001
supViT 0.001 0.01
MAE 0.0001 0.0001
MoCo 0.0001 0.0001

5. Results
In the PCam dataset, there are duplicates of images due
to the procedure used to create it. In all experiments, we
use the test set after the removal of the duplicates. First,
we perform the inference using a test set with original
images (with full context size) using the analysed models.
As a result, the reference values of performance metrics
are obtained (Table 2).

Table 2
Deep Learning models’ performance when full available con-
textual information is given (so-called reference performance).

model accref precisionref recallref AUCref
ResNet18 0.8786 0.9396 0.7754 0.9477

DenseNet121 0.8941 0.9498 0.8029 0.9904
Swin 0.9172 0.9680 0.8405 0.9716
supViT 0.9160 0.9514 0.8537 0.9734
MAE 0.9173 0.9513 0.8568 0.9746
MoCo 0.9143 0.9617 0.8397 0.9708

The analysed models have similar reference perfor-
mance. However, it is observed that transformer-based
models perform slightly better than convolutional mod-
els. Note that the convolutional models have smaller ca-
pacity as they have much less tunable parameters in mil-
lions (ResNet18 - 11.7, DenseNet121 - 8) than transformer-
based models (Swin - 86.7, ViT - 85.8), which can be
a source of the difference.

5.1. Image dimensions mapping
As already mentioned transformer-based models operate
on the resized PCam images (224x224) whereas the con-
volutional models - on the original size of the images
(96x96). Therefore, the maximum size of the context and
the central square is increased. This mismatch is impor-
tant when analysing the results on a common axis. Note
that the mapping from the size of 96x96 to 224x224 is
of factor 2.33 which makes the alignment difficult when

trying to map the values of context size in the two sce-
narios. As a solution, we decrease the context size in
the resized images by 7 pixels as opposed to the scenario
with images of original size where it is done pixel by pixel.
Cutting out the context by every 7th pixel in the resized
image translates to cutting every 3rd pixel in the original
image. As a consequence in the plots in the following
sections, there will be more points on the curves referring
to the convolutional models than the transformer-based
ones. Note that the context size of 32 within the original
images maps to the value of 74.67 within the resized im-
ages, therefore, between the 74th and 75th pixel (which we
additionally analyse despite the policy to cut off the con-
text by every 7th pixel). To aggregate the results from the
two context sizes, we apply a conservative approach. We
take the score that is the furthest from the label meaning
that (1) if the correct class is 1, we take the lowest proba-
bility from the two pixels (74th and 75th), (2) if the label
is 0, we take the biggest probability.

5.2. Drop of performance with
the decrease of context size

Having reference values of performance metrics, we limit
the context size within the input images by applying
a black border to hide parts of the contextual information.
The performance metrics for different models are shown
in Figure 3.

It is observed that the metric that is the most affected
by limiting the amount of contextual information avail-
able at the prediction time is recall. This metric is es-
pecially important in healthcare where false negatives
are of the greatest concern. The biggest drop in recall
(0.84) occurs in the case of MoCo model which starts to
predict mostly one class - normal. At the same time, in
the case of this model, the precision curve slightly in-
creases with the decrease of context size (up to 0.016
when 𝑐𝑜𝑛𝑡𝑒𝑥𝑡_𝑠𝑖𝑧𝑒 = 0) even though the reference value
was already very high (0.9617). The two models that ex-
perience the smallest drop of recall are Swin (0.41) and
DenseNet121 (0.40).

Note that precision seems to be the least impacted
metric by the limitation of contextual information.
The most considerable decrease is observed in the case
of DenseNet121 (0.14) and MAE (0.11), however, in
the first case, the significant drop is observed even when
the amount of context is only slightly limited.

In the case of accuracy and AUC plots, all the models
behave similarly except MoCo which has the biggest
drop of about 0.41. Interestingly, the accuracy, recall
and precision curves of ResNet18 experience significant
fluctuation over different context sizes. In the case of
accuracy and recall, local minimum is observed for a con-
text size of about 24, whereas the local maximum at 8.



Figure 3: The performance gap when the context size is limited. The performance metrics of Deep Learning models decreased
by the respective reference values (when full context is available) under different context sizes are shown. Note that the values
on the x-axis are in decreasing order which makes an interpretation of the experiments easier. The y-axis is not shared within
the subplots so that the variations of results for different models are more visible. The markers on the curves corresponding to
transformer-based models highlight a smaller number of data points than in the case of convolutional models.

Note that by the fact that fewer data points are depicted
in the case of transformer-based models than in the con-
volutional models, the smoothness of the curves cannot
be compared between the two families of models, unlike
the general trends. Overall, it seems that the analysed
convolutional models are more sensitive to the lack of
contextual information than the transformer-based mod-
els (except MoCo). However, the differences do not seem
significant taking into account the gap in the models’
capacity.

5.3. Consistency of predictions over
different context sizes

Despite the changes in models’ performance, the predic-
tions for some images are the same over different context
sizes. It turns out that the model that generates the con-
sistent predictions most often is Swin and at the second
place - supViT (see Table 3). The rest of the models are far
behind when it comes to the percentages of images with
agreeing predictions. The most sensitive to the decrease
of the context size is DenseNet121.

Table 3
Percentage of images that get the same prediction regardless
of the context size.
ResNet18 DenseNet121 Swin supViT MAE MoCo

54.66 52.39 72.41 69.06 60.76 58.20

5.4. Misleading pieces of context
The decrease in performance results means that the mod-
els change their predictions for some images depend-
ing on the amount of contextual information. We dis-
tinguish two types of images (1) the ones that undergo
the change of prediction given a particular model only
once (2) the ones that experience the change of predic-
tion more than once (referred to as ’swinging images’).
We present how the probability of class tumour changes
depending on the context size for the sample images from
the aforementioned two types in the case of DenseNet121
(Figure 4). It is seen that the images that undergo fre-
quent changes of the predictions are the ones that get the
probabilities close to the threshold of 0.5. However, note
that there is one sample (depicted in blue colour) that the
model was initially confident about (probability above
0.8) but with the decrease of the context size, the prob-
ability went down and started to oscillate around the



threshold. It can be seen that in the case of images that
experience the change of prediction only once, it happens
for different context sizes.

Figure 4: The misleading nature of context depending on
its size (on the example of DenseNet121). The probability of
the class tumour is shown in two cases: all images that ex-
perienced the change in the prediction in more than half of
all context sizes (top), and a sample of images that changed
the class only once (bottom).

The analysis of when (at what context size) the model
changes predictions was performed. We analyse the
number of images undergoing the particular direction
of a change for the first time at the given context size.
In the analysis, the ‘swinging images’ are not included.
We show results only for DenseNet121 as for illustration
(Figure 5). Interestingly, it can be seen that the changes
of predictions occur mostly for the extreme values of
context size - either the small or the big ones. This ob-
servation holds for other models except ResNet18 where
the shift TN->FP happens mostly for moderate values of
context size, however, the scale of the shift is small as for
the given moderate context size there are a maximum of
11 images that undergo a particular change of prediction.

5.4.1. Possible interpretation

The shift FP->TN could suggest that the model has seen
some tumour cells in the context area as it predicted
the class tumour but by limiting the amount of contex-
tual information, we cut off the pixels containing these
tumour cells and the model outputs the correct class
‘normal’. Such behaviour of the model could be under-
standable as the model was not explicitly said to base its
opinion only on the central square.
The other shifts are more difficult to find a reasonable ex-
planation of. For example, the shift FN->TP could mean
that initially, the model focused too much on contex-
tual information where there was only normal tissue.

Figure 5: Number of images undergoing the change of pre-
diction for the first time given the particular context size with
the distinction on the initial and consecutive model prediction
(‘swinging images’ not included). Note that for better visibility,
the y-axis is not shared between subplots. The bin width is
equal to 1. The results are provided for the DenseNet121.

When this distraction in the form of contextual informa-
tion was taken away, the model paid only attention to
the key central part and spotted the tumour cells and as
a consequence output the correct class. However, such
a behaviour of the model is not desirable.
In the aforementioned possible interpretations, we fo-
cused on the ones that do not require domain knowledge.
However, the tissue structure and some spatial relation-
ships that were partially covered by the black borders
may potentially also play a role in the changes of model
predictions.

5.4.2. Summarized model behaviour

The summarized results from the histograms (without
the distinction on the type of prediction shift) correspond-
ing to different models are shown in Figure 6. It turns
out that indeed (as shown in Figure 5) in the case of
DenseNet121, the most changes occur for extreme context
sizes but it is even more visible in the case of ResNet18.
In supViT and MAE, the biggest boost of the number
of changes occurs when the context size is significantly
reduced. The most changes in total are observed when
MoCo is used.

Lastly, it was analysed how many images in total expe-
rience a particular number of prediction changes given
a particular model (Figure 7). It turns out that the mod-
els that change predictions more than 24 times per im-



Figure 6: Number of images undergoing the change of predic-
tion for the first time given the particular context size (‘swing-
ing images’ not included). To account for the fact that in
the case of transformer-based models, we cut the context size
by every 3 pixels (after mapping the image size back to the
original one) not by 1 pixel as in the case of convolutional mod-
els (see Section Image dimensions mapping), we summed the
number of images undergoing the change from three consec-
utive context sizes. By the application of the aforementioned
‘normalization’, the curves of convolutional and transformer-
based models are on the same scale and have the same number
of data points).

Figure 7: The logarithm of the number of images that ex-
perience the particular number of prediction changes given
a particular model. To account for the fact that the maxi-
mum possible number of prediction changes in the case of
transformer-based models was 10 and in the case of convo-
lutional models - 31, the values on 𝑥-axis are multiplied by
the factor of 3 (for transformer-based models) to put them on
the same scale as convolutional models allowing a fair com-
parison.

age (out of 30 analysed possibilities, after rescaling ex-
plained in the Figure’s caption) are MAE and supViT .
However, these are very rare - in the case of MAE, there

are only four such images, and in the case of supViT -
only one. Note that the area under the curves cannot be
compared between the models from the convolutional
and transformer families as in the latter there are fewer
data points. However, when comparing DenseNet121 and
ResNet18, it is visible that for the ‘most swinging’ images,
the changes of predictions are more frequent in the case
of DenseNet121 than ResNet18. The four ‘most swing-
ing’ images given DenseNet121 are shown in Figure 4.
The most similar models in behaviour are supViT and
Swin where the relationship between the logarithm of
the number of images undergoing the particular number
of changes and the number of changes is almost linear.

5.4.3. Models’ agreement

It is analysed whether the same images are confusing
to the models when the context size is limited. We
investigate how many ‘swinging images’ are in com-
mon for any pair of models regardless of context size
when the changes of predictions occur. We analyse
transformer-based models and convolutional ones sepa-
rately. It turns out that the biggest agreement between
the transformer-based models is in the case of Swin and
MAE (1176 cases) whereas the smallest agreement is
between supViT and MoCo (502 cases). In the case of
ResNet18 and DenseNet121, there are 4822 ‘swinging im-
ages’ in common, therefore, they seem much more alike
than transformer-based models even though three out of
four analysed transformer-based models have the same
architecture (ViT) but differ in pretraining scheme.

6. Conclusions
In the work, we investigate whether the Deep Learning
models for vision are sensitive to contextual information
when making predictions on histopathological data. It
turns out that when the context size is limited, the mod-
els achieve worse performance than in the case when
full context is available which means that context is im-
portant at prediction time. It is observed that depending
on the amount of contextual information, the model can
output different predictions for a given image. We evalu-
ate the behaviour of models that have similar reference
performance metrics (when full access to a context is
provided) in the case when the size of contextual infor-
mation is decreased. It turns out that the model that
is the most sensitive to the limitation of context size is
MoCo. It may possibly be attributed to the fact that the
model was pretrained in a contrastive way but it requires
further investigation. We observe that there are images
of two types - the ones that undergo one change of pre-
diction and the ‘swinging images’. For the latter, it would
be interesting to consult the images with a histopatholo-
gist to verify whether indeed in these cases, the context



may be misleading. Moreover, in the future, the possible
interpretations of the obtained results could be comple-
mented by the analysis with the use of heatmap-based
XAI techniques.
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