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Abstract
Reinforcement Learning (RL) is a learning approach where agents receive feedback in the form of a reward function from the
environment, allowing them to learn through trial and error. In dynamic environments with unexpected events, there is
often a need to design new or adaptive reward functions to dynamically adapt the behavior based on the changing dynamics
of the environment. Current methods for specifying reward functions are limited to manual reward function definition or
extracting/inferencing from human demonstrations. On the other hand, ontologies with the ability to provide a structured
representation and organize concepts and properties hierarchically, facilitate a deeper understanding of the environment,
empowering agents to identify and comprehend new events.

This paper presents a new Ontology-based Adaptive Reward Function (OARF) method, which dynamically creates
new reward functions based on domain ontologies. The OARF method is evaluated in a job shop scheduling environment,
demonstrating its superiority over a state-of-the-art baseline algorithm. The evaluation shows improved resource utilization
rate, total processed orders, decreased average waiting time, and total failed orders, highlighting the effectiveness of the
OARF method.
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1. Introduction
In the field of Reinforcement Learning (RL), agents learn
optimal behavior by interacting with their environment
and receiving rewards. The reward function, defined by
the RL problem designer, guides the agent toward its
goal. In dynamic environments, unexpected events intro-
duce uncertainties and require the learning agent to be
adaptable in order to effectively navigate and respond to
changing conditions. Statically defining reward functions
in such environments is not useful because the dynam-
ics of the environment can change over time, leading
to a mismatch between the predefined rewards and the
desired behavior. Dynamically adjusting or adaptive re-
ward functions are more useful in dynamic environments
because they can adapt to changing circumstances and
provide relevant feedback to guide the agent’s decision-
making [1].

Several approaches have been suggested in the liter-
ature, one of which is Inverse Reward Design (IRD), a
method that derives reward functions from expert demon-
strations [2]. However, a significant challenge arises due

MRC 2023 – The Fourteenth International Workshop Modelling and
Representing Context. Held at ECAI 2023, 30.09.-5.10.2023, Kraków,
Poland.
$ saeedeh.ghanadbashi@ucdconnect.ie (S. Ghanadbashi);
a.zarchini@ce.sharif.edu (A. Zarchini);
fatemeh.golpayegani@ucd.ie (F. Golpayegani)
� 0000-0003-0983-301X (S. Ghanadbashi); 0000-0003-4738-7604
(A. Zarchini); 0000-0002-3712-6550 (F. Golpayegani)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

to the limited availability of human expertise. The reward
shaping technique modifies the reward function to guide
the learning agent towards desired behaviors. It pro-
vides additional, intermediate rewards during the learn-
ing process to facilitate faster and more effective learning.
Reward shaping encompasses various approaches such
as state-based potentials [3], intrinsic rewards [4], and
learning-based reward shaping [5] to provide incentives
for agents. However, there is a potential difficulty in
shaping rewards for events that have not been explicitly
encountered during the training phase. Dynamic reward
shaping incorporates verbal feedback [6] or demonstra-
tions [7] presenting human preferences and expectations.
However, challenges may arise due to the potential for
incorrect feedback or untimely demonstrations. Reward
Machines (RMs) represented as Finite-State Automata
(FSAs) [8] is a formalism used in RL that represents the
desired behavior of an agent by specifying rewards asso-
ciated with different states and events in an environment.
However, in dynamic environments, unexpected events
can disrupt the predefined reward structure, leading to
unpredictable behavior.

Ontologies serve as a representation of human knowl-
edge and aid in inferring properties within the environ-
ment. We propose a new Ontology-based Adaptive Re-
ward Function (OARF) method, in which the agent ini-
tially constructs an ontology-based schema that repre-
sents its observations using concepts, properties, and
relationships. Subsequently, by inferring beliefs about
properties and constraints that define allowable val-
ues for those properties, the agent generates a new re-
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Figure 1: Simulated job shop scheduling environment. 𝐼1, 𝐼2, and 𝐼3 are sources that generate orders. {𝑚0, 𝑚1, … , 𝑚15} are the
machines that can process one order at a time. Machines are categorized into three groups, 𝑛1 (purple color), 𝑛2 (pink color),
and 𝑛3 (yellow color). Machines in the same group can perform a similar operation. 𝑧1, 𝑧2, and 𝑧3 indicate work areas that are
located in different locations in the factory. 𝑥1, 𝑥2, and 𝑥3 are sinks that consume the processed orders.

ward function. This new reward function aims to maxi-
mize/minimize the value of a property associated with a
positive/negative belief satisfying the constraints of the
property.

The rest of this paper is organized as follows. Sec-
tion 2 describes a motivating example in the job shop
scheduling, and Section 3 explains the problem statement.
Section 4 describes our method. In Section 5, the scenar-
ios are defined, and the results are analyzed. Finally, our
conclusion and future works are drawn in Section 6.

2. Job Shop Scheduling
Job Shop Scheduling (JSS) is a problem that involves
processing multiple orders on multiple machines in a
specific sequence. Unforeseen events in JSS can include
machine breakdowns, order arrivals or cancellations and
priority changes. In this section, JSS is presented as a
motivating example to demonstrate the application of
the new OARF method.

In the JSS environment, the scheduler agent selects an
order from the queue of orders in the source. Then, it
moves to a work area and selects a machine in the desired
group to process the order. Finally, it selects an order
from the queue of orders in the machine and places the
processed order in a sink (see Figure 1).

3. Problem Statement
In an RL algorithm, the state 𝑠𝑡 represents the observation
of the agent at time step 𝑡, the action 𝑎𝑡 is the decision
made by the agent, and the reward 𝑟 𝑡 quantifies the im-

mediate feedback or consequence associated with taking
that action in a particular state. When setting up an RL
algorithm, human experts typically define reward func-
tions to guide the agent toward the desired goal. How-
ever, in dynamic environments, reward functions need
to be created and modified dynamically and adaptively
to accommodate unforeseen events. For instance, in the
JSS environment, this involves defining a new reward
function, such as minimizing the waiting time for urgent
orders, when a new situation such as generating high-
priority orders is detected. In this research, we propose
using ontology to define/adapt new reward functions for
newly identified events.

Ontology can be defined as a formal representation
of knowledge that captures concepts, relationships, and
properties within a domain to facilitate meaningful un-
derstanding and reasoning (e.g., interpretation of an un-
foreseen or unexpected event). For instance, an ontology,
as depicted in Figure 2, is employed to capture the un-
derlying concepts in the JSS environment. This ontology
comprises seven fundamental concepts: Belief, Source,
Order, WorkArea, Group, Machine, and Sink, each corre-
sponding to a distinct entity in the JSS environment. Sub-
classes are defined within the ontology to represent more
specialized concepts/properties under each superclass.
Furthermore, human experiences inform the association
of specific beliefs with certain properties. For instance,
WaitingTime is linked to negative Belief, indicating that
prolonged waiting time negatively affects the agent’s
performance.

As the environment undergoes changes, the concepts
and properties observed by the agent also change. In
response, the agent can adapt its reward function to max-



Figure 2: Ontology for the job shop scheduling environment.

imize positive properties and minimize negative proper-
ties, ensuring its behavior aligns with the desired objec-
tives.

4. Ontology-based Adaptive
Reward Function Method

We propose a new Ontology-based Adaptive Reward
Function (OARF) Method, wherein the agent initially
employs an ontology-based schema to represent its cur-
rent state by concepts, properties, and relationships be-
tween them. Subsequently, a mechanism is established
to prioritize the most crucial properties for immediate
consideration. Then, the constraints associated with the
property are inferred by employing logical reasoning over
the existing relationships. Ultimately, the agent formu-
lates new reward functions based on the belief value and
constraints associated with highly prioritized properties

encountered in the environment.

4.1. Stage 1: Ontology-based Modeling
In our previous paper [9], we discussed how the utiliza-
tion of ontology allows agents to effectively represent
and comprehend their observations through an ontology-
based schema. The Semantic Sensor Network (SSN) on-
tology, a model based on a standard for sensor networks
[10], is employed to describe the data collected by sensor
resources (see Figure 3).

We define 𝑂𝑡 = {𝐶𝑡 , 𝐹 𝑡 , 𝐿𝑡 , 𝑊 𝑡 } as the ontology-based
schema describing the data monitored/observed by the
agent at time step 𝑡. 𝐶 represents the set of concepts,
𝐹 represents properties and 𝐿 represents the set of re-
lationships over these concepts that expresses which
concepts are associated with which concepts/values by
which properties (𝐿 ⊆ 𝐶 × 𝐹 × 𝐶). The agent encounters
different sets of concepts and properties when carrying
out different tasks. For instance, while engaged in or-
der selection, the job shop scheduler agent’s observation
is limited to the concept “Order” and its corresponding
properties. Ontology engineers may assign weights 𝑊
to the relationships that determine their importance. For
example, within the context of JSS, the waiting time plays
a crucial role in evaluating the scheduling process’s per-
formance, allowing an ontology engineer to assign a high
importance weight to the relationship “hasWaitingTime”
(𝑊(hasWaitingTime) = High). Five degrees of weight
are available and can be converted to numerical values
using predefined mappings: “Lowest”, “Low”, “Middle”,
“High”, and “Highest”.

4.2. Stage 2: Property Prioritization
By leveraging the assigned relationships’ weights, the
agent can prioritize properties associated with relation-
ships of higher importance. Let 𝑊 ∶ 𝐿 → ℝ be the
function that assigns a weight to each relationship, indi-
cating its importance. For each property 𝑓 ∈ 𝐹 , we can
define its priority based on the weights of the relation-
ships associated with it:

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑓 ) = Σ𝑙∈𝐿𝑓 𝑊(𝑙) (1)

, where 𝐿𝑓 is the set of relationships connected to
property 𝑓 .

4.3. Stage 3: Constraints Deducing
In this stage, through logical reasoning, the agent can
derive allowable values for a specific property 𝑓 based
on the relationships it has with other concepts or prop-
erties in the ontology. The result is a set of equations
that define the constraints 𝐻(𝑓 ) for property 𝑓 . For
example, in JSS, the agent can deduce the constraint



Figure 3: The application of the SSN ontology, combined with cross-domain knowledge, is employed to annotate and present
sensor data [9].

𝐻(“’WorkingTime’) ∶ “WorkingTime”(m) ≥ “Target-
WorkingTime”, ensuring that the working time of ma-
chine 𝑚 is equal to or greater than a specified target
working time.

4.4. Stage 4: Reward Function Extraction
A set of reward functions for different states can be de-
fined based on the properties with negative or positive
beliefs in an ontology-based schema. To do so, the agent
aims to maximize/minimize the value of properties as-
sociated with positive/negative beliefs subjecting to the
relevant constraints (see Equation 2).

if Belief(𝑓 ) = Positive: 𝑎 ← argmax
∀𝑎∈𝐴

𝑓 , 𝐻(𝑓 ) ≤ 0 (2)

else if Belief(𝑓 ) = Negative: 𝑎 ← arg min
∀𝑎∈𝐴

𝑓 , 𝐻(𝑓 ) ≤ 0

else if Belief(𝑓 ) = Neutral: 𝑓 not considered for rewards

In this formulation, the objective is to maxi-
mize/minimize the value of property 𝑓 . The constraints
are written in the form of inequality constraints, where
each constraint should be less than or equal to zero. For
example, for the order selection task in JSS, since wait-
ing time is associated with negative belief, the agent
defines minimizing the waiting time as its new reward
function. By incorporating the reward function of min-
imizing waiting time into the agent’s learning process,
it optimizes the sequence of operations and allocates ap-
propriate machine resources to minimize idle time and

maximize throughput.

5. Evaluation
We conducted an evaluation of the OARF method in a
simulated JSS environment (see Figure 1). We defined
low, medium, and high priority orders as 30%, 50%, and
20% of the total orders, respectively. Furthermore, we
set the failure rate for machines at 50% to be low, 30%
to be medium, and 20% to be high. We performed 1000
simulated episodes, each with 100 simulation steps, and
evaluated the performance of the baseline method against
the OARF-enabled baseline method.

To evaluate the OARF method, we defined four sce-
narios that cover different order loads (number of orders
per time step) and due date requirements. The scenarios
are presented in Table 1.

The baseline method [11, 12] utilized the LIFO algo-
rithm for order selection in the source area, the TRPO
learning algorithm for machine selection, and the FIFO
algorithm for order selection in the machine.

In the proposed approach, the agent employs the
TRPO learner to select orders in the source area, aim-
ing to maximize the due date of orders (represented by
a new reward function defined based on the "DueDate"
property in the domain ontology). This strategy ensures
that orders with closer due dates are prioritized for pro-
cessing. Then, the agent defines the reward function for
machine selection as “maximizing the working time of
machines”. Next, to select orders in the machine, the
agent employs the TRPO learning algorithm for four out



Table 1
Job shop scheduling environment settings.

Scenario Description

Order
Load

Light Three orders are generated at
each time step.

Heavy Six orders are generated at each
time step.

Due Date
Level

High 5% of orders have a low due date,
80% have a medium due date,
and 15% have a high due date.

Low 25% of orders have a low due
date, 70% have a medium due
date, and 5% have a high due
date.

of sixteen machines with a new reward function of “min-
imizing the waiting time of orders”. For the remaining
twelve machines, the agent utilizes the baseline FIFO
strategy.

To assess the proposed method’s performance, we em-
ployed the following performance metrics: average
working time of machines, the average waiting time of
orders, the total number of orders that have failed to meet
the required due date requirement, and the total number
of successfully processed orders.

5.1. Results and Discussion
We conducted a thorough analysis of the performance
metrics across ten runs for each scenario and the re-
sults are depicted in Figure 4. These results demonstrate
that our OARF-enabled baseline method yielded improve-
ments in the average utilization rate and total processed
orders, while simultaneously reducing the average wait-
ing time and total failed orders as compared to the base-
line method. For the details of percentage change in
metrics refer to Table 2. These results indicate that OARF
method had a more significant impact on scenarios with a
higher number of orders. Moreover, the improvement in
the Low scenarios is lower than in High scenarios. This
is because the number of low due date orders increases,
and our proposed method shows less improvement due
to the limited number of resources.

6. Summary and Future Directions
Within the field of Reinforcement Learning (RL), artificial
agents learn optimal behavior by interacting with envi-
ronments, guided by reward functions that dictate desired
behavior. Reward function design becomes challenging
in dynamic environments due to the ever-changing na-
ture of the system. In a dynamic environment, the under-
lying dynamics, goals, and constraints can evolve over
time, making it difficult to define a static reward func-

tion that remains effective. In order to facilitate the dy-
namic modification of reward functions, we introduce a
novel method called Ontology-based Adaptive Reward
Function (OARF). This approach involves defining a new
reward function by considering the belief value and con-
straints associated with properties. This paper opens
up several avenues for further exploration. While our
focus has been on testing the proposed solution in job
shop scheduling scenarios, future work will involve eval-
uating the effectiveness of OARF method in other sce-
narios and environments, including non-deterministic
environments. The accuracy and completeness of the
ontology used in the OARF method play a critical role in
its performance, particularly in dynamic environments
that necessitate frequent ontology evolution and updates.
Additionally, comprehending and exploring an ontology-
based schema can present challenges and summarization
techniques can be utilized to provide concise overviews
that focus on essential concepts, thereby facilitating bet-
ter understanding [13, 14].

Furthermore, it is important to acknowledge that con-
cepts and properties may vary depending on the context.
Thus, the RL agent may need to employ different ontolo-
gies when operating under different conditions. Assess-
ing the impact of incorrect beliefs about properties on the
overall process becomes crucial in such cases. Addition-
ally, a mechanism for dynamically adjusting weighting
and objective priorities should be defined (multi-objective
problem).
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