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Abstract

This paper aims at solving the optimization prob-
lem of global channels opportunistic accessibility
in railway cognitive radio environment. Especial-
ly, we propose an efficient cooperative model for
multiple wayside base stations, which consists of
bayesian inference to calculate the probability of
success transmission on single station and team col-
laboration to maximize network performance with-
in a group of base stations. Instead of only perform-
ing the traditional sensing and assigning, the base s-
tations have an ability to learn from the interactions
with the others and environment to get prior knowl-
edge. The base station agents further analyze pri-
or knowledge and perform optimal channel assign-
ment for global network performance. Our cooper-
ative model of channels opportunistic accessibility
is then formulated, and an example in railway com-
munication revealed that the model can also reduce
the computational complexity in the high-mobility
communication environment.

1 Introduction
With the rapid growth of wireless network users, spectrum
bands nowadays have become a costly resources [”Wang et
al., 2015; Akyildiz et al., 2006]. However, some of the spec-
trum, which is licensed by the government several decades
ago, is sporadically used because of the development of the
science and technology. The current fixed spectrum alloca-
tion policy adopted by the government agencies becomes un-
able to handle the spectrum scarcity problem due to the grow-
ing demand of the spectrum resources [Ma et al., 2015]. To
address this critical issue, Federal Communication Commis-
sion already gave the permission to unlicensed users(a.k.a.
secondary users) to utilize the licensed spectrum when the li-
censed users(a.k.a. Primary users) are not in use, known as
dynamic spectrum access [fcc, 2002]. This concept is not on-
ly proposed to solve the spectrum inefficiency problem, but
also driving a new research area: cognitive radio.

Cognitive Radio was first proposed by Joseph Mitola in
1999 [Mitola and Maguire, 1999]. Its basic idea is that un-
licensed users can use a software-defined radio, in which

they learn from the environment and apply its reconfigura-
bility to adaptively adjust its parameters to achieve a high
efficiency and robust network [Haykin, 2006]. Howev-
er, considering the factors of the environment, serious un-
predictability of the system is one of the critical issue of
cognitive radio [Zeng et al., 2010; Akyildiz et al., 2008;
Wang et al., 2011]. When performing spectrum management,
base stations in the cognitive radio environment have to face
a spectrum decision problem as the behavior of choosing a
busy licensed spectrum for the unlicensed users to communi-
cate will seriously affect the performance of unlicensed users.

Applying cognitive radio technique in railway has attracted
much interest in the research community and governmental
agencies. Federal Railroad Adminstration proposed a cogni-
tive radio method to improve the performance of positive train
control systems in order to gain train safety and efficiency [A-
manna et al., 2010]. The French Urbanisme des Radio Com-
munications project was one of the first projects in France and
in Europe to raise the problem of the optimization of spectral
resources in the Paris region, taking into account the transport
field and particularly the urban guided systems [Berbineau et
al., 2014]. Specifically, we focus on the high-speed railway
environment in this paper to solve the train communication
problem. When the train rides at a very high speed, such
the problems as Doppler shifts, fast cell switching and the
penetration loss are difficult to avoid, consequently causing
the frequent spectrum handoff and further lowering global
performance of network communication [Kalil et al., 2010;
Kumar et al., 2015; Ai et al., 2014]. Under this circumstance,
the base stations in the network need an ability to act indi-
vidually, typically “assign and handoff”, and work together
for global optimization, which possesses huge computational
complexity.

The decentralized nature of multi-agent system allows us
to model a complex railway communication system, in which
each base station is considered as an interacting intelligent
agent. Each agent can coordinate with the adjacent agents
by exchanging information to achieve global performance of
the system. But the decision process of each agent has to
be performed independent of the system due to the inherent
characteristics of base station.

Actually, modeling channel accessibility in railway for
quantitative analysis is still a challenge. There are four ex-
planations:



(1) As we all known, the licensed spectrum has been as-
signed to the Primary users(PUs) already. Although
we intend to share the licensed spectrum with the sec-
ondary users(SUs), it is difficult to forecast the spec-
trum holes, as the PU activity is intangible and has cer-
tain randomness. But through long-term observation,
the recorded history may show the statistical informa-
tion of PU occurrence, and the corresponding distribu-
tion of occupancy duration [Saleem and Rehmani, 2014;
Sung et al., 2010];

(2) When the train is communicating using a licensed chan-
nel, it may suffer a collision with another concurrent SU
such as wayside devices. Collisions among the concur-
rent SUs would lower the quality of service [Wu et al.,
2010; Hong-Jiang and Qi, 2009];

(3) The channel quality may induce error during the train
transmission due to the inherent unreliability of the wire-
less channel. A receiver on the train may receive unnec-
essary duplicate copies of the same signal in a short pe-
riod because of multi-path reflections. Instead, the back-
ground noise needs higher reception gain to avoid errors
[Xing et al., 2013];

(4) Frequent spectrum handoffs have a negative impact on
link delay and link maintenance. Adjacent agents would
coordinate to reduce the unnecessary spectrum handoffs
[Kumar et al., 2015].

Based on the above facts, it is necessary to provide an op-
timized inference model for improving the efficiency of op-
portunistic channel accessibility within entire railway radio
network with multiple base stations. Many researchers have
done great contributions to address this issue, such as spec-
trum sensing and management technique, PU activity pre-
diction and so on[Kim and Kim, 2010; Niyato et al., 2008;
Canberk et al., 2011]. However, many methods about mod-
eling channel accessibility or radio resource allocation con-
sider only the performance of single base station such as [Xie
et al., 2012; Liu et al., 2001]. And see [Liu et al., 2001],
multi-user opportunistic transmission scheduling is modeled,
at each time slot, the user chooses the best weighted channel.
The weight of the channel reflects the long term system fair-
ness. By only considering the time varying property of the
channel, the investigation seems not comprehensive. And lo-
cation information is considered in [Choi et al., 2014] to per-
form optimal sensing and power allocation. There is a lack
of comprehensive research about multiple base stations col-
laboration for global network performance. Also, Bayesian
Nash equilibrium model is given in [Krishnamurthy, 2009], to
provide the competitively optimal behavior for cognitive ra-
dio. And [Başaran et al., 2016] provides the bayesian method
in spectrum sensing. [Xing et al., 2013] shows the bayesian
way in PU prediction. Based on these investigations, this pa-
per aims at providing a better communication network for the
locomotive and the access points for urban scenarios in a rail-
way cognitive radio environment by establishing a compre-
hensive multi-agent collaboration model for bayesian oppor-
tunistic channel accessibility using priori context features.

The decision about channel access of a base station agent
must change the performance of railway radio communica-

Figure 1: Proposed bayesian network model using causes and
effects.

tion. Through measuring the quality of service of the SUs
within entire network, the base station agent can easily evalu-
ate the effect of its previous decisions. By recording these by-
pass feedbacks about decisions and performances, the agent
can learn from past experience and promote further actions so
as to achieve the optimal selection.

The rest of the paper is organized as follows. Section 2
presents a formulation of our problem in details, in which
a mathematic model for the channel opportunistic access is
given. In section 3, the basic principle of bayesian network is
summarized, with the bayesian network based channel acces-
sibility model using multiple cues and quality of service sub-
sequently, in addition the leverage of the inference in agent
making decision under uncertainty. In section 4, an example
of the railway cognitive radio is given to illustrate the infer-
ence of the proposed model. Section 5 concludes the paper.

2 Problem Formulation
As we discussed above, channel accessibility should be in-
ferred from available context cues. Just lacking of sufficient
clues would cause highly uncertainty in such an inferring pro-
cess. To address this issue, as more clues as possible should
be introduced in this inferring process to avoid uncertainty.
We pay our attention to the causes of the channel accessi-
bility, and the effects that channel accessibility brings to the
communication performance between the trains and base sta-
tion agents. Standing on the impacts on channel accessibility,
we divide these causes into four categories: PU activity types,
peer devices interference, physical factors, priori information
from neighboring agents.

(1) PU activity: When a SU and a PU have a collision on
using a same channel in a CR network, the spectrum
shared by the SU would seriously affect date transmis-
sion of the PU. The kind of concurrent spectrum occur-
rence with the PU goes against the principle of the pro-
tection of licensed devices[Haykin, 2006]. Hence, for
channel accessibility of SUs, the activities of PUs must
be considered, which can be seen as the primary cause
of the fluctuation of the railway cognitive radio network.



Figure 2: The overall structure of multi-agent collaborative railway cognitive radio channel accessibility framework.

(2) Peer devices interference: Some wayside equipmen-
t such as bluetooth devices, wireless sensor networks,
and Ad-Hoc networks along the railway are another in-
terference to the network. We permit the collision be-
tween these peer devices by considering the cooperation
and competition in cognitive radio network, which is al-
so a research area to which a lot of attention has been
paid[Tragos et al., 2013].

(3) Physical factor: Some physical factors, such as multi-
path reflections, channel gain, thermal noise, propaga-
tion loss, transmission power and reception gain, often
cause a unpredictable transmission failure. We can not
ignore these physical factors.

(4) Neighbors information: Through interaction with neigh-
boring base stations, a base station can get its neighbor-
ing channel-related information and know the working
channel of the train. Once taking it into consideration,
the base station would obviously reduce the negative
spectrum handoffs.

A large amount of prior knowledge constitute the causes of
spectrum decision for a base station. A value function is used
to distinguish the accessibility of each channel. Correspond-
ingly, the effects after choosing a channel can be also used to
validate the choice whether to be optimal or not. We often
employ the metric about quality of service as the indicators.

(1) Throughput: After assigning the channel, either loco-
motive or the access point for urban scenarios will s-
tart to transmit data over the channel. By calculating the
throughput of the SUs, we can easily judge whether this
assignment is good or bad.

(2) Power consumption: The transmitter and receiver of the
train or the base station will consume more power if
the assignment is not good enough [He et al., 2008;
2009]. For example, if some of the packets are dropped
during receiving or the receiver find out that there are
occasional bit flips in the data stream, transmitter and
receiver may consume unnecessary power to retransmit.

(3) Pocket Delay: End-to-end delay or one-way delay refers
to the time taken for a packet to be transmitted across a
network from source to destination. Such as waiting for

the PU to leave, or in a peer devices transmission queue
would cause packet delay. It is also another significant
indicator to measure network performance [Lin, 2013].

With the definition about the causes and effects of channel
accessibility, we can explicitly infer the channel accessibility.
Bayesian network is an effective approach to deal with such
the uncertainty. It offers reasoning semantics for representing
the relation of “cause and effect” via an intuitive graphical
representation. The proposed model is shown in Figure 1. We
can see from the figure that, the agents can get information
from the environment, through analyzing and reasoning these
information, the agent can assign channel to the train.

3 Bayesian Opportunistic Channel
Accessibility

The Bayesian Network is a probabilistic graphical model that
represents a set of random valuables and their conditional
dependencies via a directed acyclic graph. By leveraging
the bayesian network we can inferring high-level hypothesis
from some observable quantities, latent variables or unknown
parameters [Friedman et al., 1997; Heckerman, 1999]. The
overall structure of our proposed model along a railway can
be see in Figure 2.

3.1 Bayesian Inference of Channel Opportunistic
Accessibility

Our main purpose of modeling the channel accessibility is
to infer the unobservable hypothesis from available context
cues. Our modeling for channel accessibility takes 3 steps.

(1) We first need to identify the target hypothesis variable
and the corresponding information variable which have
a robust random relation with the target variables.

(2) By building the topology of the directed acyclic graph,
we need to divide the information variables node into t-
wo categories: “cause” nodes and “effect” nodes accord-
ing to their casual hierarchical relations with the target
node.

(3) Finally, we need to calculate conditional probabilities
and infer the results that can help our base station agents
make decision.



Figure 3: Bayesian Network Model for Channel Accessibili-
ty.

We evaluate channel accessibility using the probability val-
ues over available channels. Now our target is to infer these
probabilities. The influencing factors of channel accessibility
and the effects that caused by the decision made by the base
station agent are the information variables. As discussed in
Section 2, the influencing factors include

(1) PU activity, that is, PU arrival probability (LuAP), PU
departure probability (LuDP), PU occupancy time (Lu-
OT), PU idle time (LuIT) [Saleem and Rehmani, 2014];

(2) Peer devices interference, that is, bluetooth devices in-
terference (BDI), wireless sensor network interference
(WSNI), railway side devices interference (RSDI);

(3) Physical factor, that is, channel noise level (CNL), prop-
agation loss (PL), all kinds of fading (FD);

(4) Neighboring agent information, that is, the channel that
the incoming train was using (CU), locomotive speed (L-
S), data packet remain in the buffer (DPB).

The effects include throughput (TP), power consumption
(PC) and delay (DL)[Wu et al., 2010]. Combining all the
features, the bayesian network model is constructed as shown
in Figure 3. Note that the abbreviations are created just to
make the directed acyclic graph and the consequent tables
clear and organized.

Next step is to define the states for each node in the direct
acyclic graph. For simplicity but generality, in this paper we
distinguish the channel accessibility into two different states,
that is, successful transmit and failed transmit [Friedman et
al., 1997]. We denote a as the positive state that the SU is
highly possible to successfully transmit on the current chan-
nel, and a as the opposite side of a as the channel status is
not qualified for transmission. Once the intermediate node

Figure 4: Mathematical Model of the Channel Accessibility.

is set, the states of parent nodes and the child nodes can be
determined, shown in Table 1 and Table 2 respectively.

In real railway environment, the probabilities of the parent
nodes and child nodes can be easily recorded and adjusted by
the agents in the long run. Consider that our main purpose
is to propose the model in the paper, we here conduct these
probabilities of all nodes by subjective estimation.

Now we can specify the probabilities of each node’s states.
Let P = {Pi|i = 1, 2, .., 13} represents 13 parent nodes of
the intermediate node. And let C = {Cj |j = 1, 2, 3} repre-
sents the children nodes. Denote x as the state variable of the
intermediate node X. pi and cj are the state variable of the
parent nodes Pi and child nodes Cj respectively. P{x|pi}
and P{cj |x} represents the conditional probabilities. And
the mathematical representation of our proposed model dis-
cussed above is shown in Figure 4.

When agent get the prior knowledge from the parent nodes
and child nodes, denote epi as the evidence provided by Pi,
and ecj as the evidence provided by Cj . Then define the ev-
idence set e = (epi, ecj). The hypothesis of the channel ac-
cessibility belief is described by the conditional probabilities
that X will be in a certain stat after considering the evidence,
denoted as P (x|e). Considering only the parent nodes evi-
dence, we can obtain:

P (x|e) ∝ P (x|ep) · P (ec|x) (1)

According to bayesian formula:

P (x|ep) = P (x|ep1 , ep2 , .., ep13)

=
∑

alli,j,k

P (x|p1,i, p2,j , .., p13,k)·

P (p1,i, p2,j , .., p13,k|ep1 , ep2 , .., ep13)

=
∑

alli,j,k

P (x|p1,i, p2,j , .., p13,k)·

P (p1,i|ep1) · · · P (p13,k|ep13)

=
∑

allpm,n

P (x|pm,n)

13∏
M=1

P (pM |epM
)

(2)



Table 1: States of Parent Nodes
Node property Node

PU activity
Name LuAP LuDP LuIT LuOT

State High High Long Long
Low Low Short Short

Peer device interference
Name BDI RSDI WSNI

State Exist Exist Exist
Inexist Inexist Inexist

Physical factors
Name PL FD CNL

State High High High
Low Low Low

Neighboring agent information
Name LS DPB CU

State Fast Many Current channel
Slow Less Not current channel

Table 2: States of Child Nodes
Node TP PC DL

State
1 High High High
2 Normal Normal Normal
3 Low Low Low

P (ec|x) = P (ec1 , ec2 , ec3 |x)
= P (ec1 |x)P (ec2 |x)P (ec3 |x)

=

3∏
N=1

P (ecN |x)
(3)

where i, j, k represent the index of the states of parent nodes,
M represents the index of parent nodes, N represents the in-
dex of the child nodes, pm,n is the value of the mth parent
node in the nth state.

By substituting equation (2) and (3) into (1):

P (x|e) ∝
3∏

N=1

P (ecN |x)· ∑
allpm,n

P (x|pm,n)
13∏

M=1

P (pM |epm
)

 (4)

Using equation (4), we can calculate P ({x = a}|e) and
P ({x = a}|e) of the intermediate node state which we de-
noted above as {x = a} and {x = a}. With these infer-
ring results, the agent can easily deduce the state of the cur-
rent inferring channel by normalization P ({x = a}|e) and
P ({x = a}|e).

4 Example of Railway Cognitive Radio
Communication

In this section, we extract a simplified single agent single
channel bayesian network model for railway channel acces-
sibility. The simplified channel accessibility model and its
mathematical model consists of 13 parent nodes and 3 child
nodes, as shown in Figure 4.

As discussed above, the paper aims to propose the model,
so we assume the conditional probability for each parent and
child node as shown in Table 3 and Table 4.

We first consider the case without any evidence, we can
calculate the probability of the state P ({x = a}) using the
data shown in Table 3 as follows:

P ({x = a}) =
∑

allpm,n

P (x|pm,n)

13∏
M=1

P (pM |epM
)

= 0.5090

(5)

and we have:

P ({x = a}) = 0.4910 (6)

We can see that the result of the good channel accessi-
bility and bad channel accessibility is approximately equal.
Without the evidence, the agent cannot determine whether the
channel should be assigned to the train.

Assuming that the agent starts to record the railway com-
munication information. After sensing every channel and
invoking the history, the agent gathers all kinds of infor-
mation from the environment. See the evidence informa-
tion from the Table 3 in the probability format. After the
train passed, we observe the train gained a fair through-
put, cost low power consumption, and the delay of trans-
mission is low. So we set the child nodes C1, C2, C3 as
P (ec1 |c1,1) = 0.5, P (ec1 |c1,2) = 1.0, P (ec1 |c1,3) = 0, and
P (ec2 |c2,1) = 0, P (ec2 |c2,2) = 0.5 and P (ec2 |c2,3) = 1,
and P (ec3 |c3,1) = 0, P (ec3 |c3,2) = 0.5, P (ec3 |c3,3) = 1, as
shown in Table 4.

With the prior probability we can get from the parent n-
odes, the conditional probability of the x = a and x = a can
be calculated using equation (2). Using the data conducted



Table 3: Conditional [probabilities for parent nodes
P (x|ep) p1,1 p2,1 p3,1 p4,1 p5,1 p6,1 p7,1 p8,1 p9,1 p10,1 p11,1 p12,1 p13,1

a 0.2 0.75 0.4 0.6 0.3 0.1 0.4 0.3 0.2 0.2 0.3 0.4 0.7
a 0.8 0.25 0.6 0.4 0.7 0.9 0.6 0.7 0.8 0.8 0.7 0.6 0.3

P (x|ep) p1,2 p2,2 p3,2 p4,2 p5,2 p6,2 p7,2 p8,2 p9,2 p10,2 p11,2 p12,2 p13,2
a 0.7 0.65 0.6 0.4 0.7 0.9 0.6 0.7 0.8 0.8 0.7 0.6 0.3
a 0.3 0.35 0.4 0.6 0.3 0.1 0.4 0.3 0.2 0.2 0.3 0.4 0.7

Table 4: Conditional probabilities of child nodes
P (ec|x) a a P (ec|x) a a P (ec|x) a a

C1

c1,1 0.7 0.2
C2

c2,1 0.3 0.4
C3

c3,1 0.2 0.1
c1,2 0.2 0.2 c2,2 0.4 0.4 c3,2 0.6 0.3
c1,3 0.1 0.6 c2,3 0.3 0.2 c3,3 0.2 0.6

above, as:

P ({x = a}|ep) ∝
∑

allpm,n

P (x|pm,n)

13∏
M=1

P (pM |epM
)

= 1.5353

(7)

P ({x = a}|ep) ∝ 0.2713 (8)

According to the equation (3), the conditional probability of
ec can be calculated as:

P (ec|{x = a}) ∝ P (ec1 |x)P (ec2 |x)P (ec3 |x)
= 1.85

(9)

P (ec|{x = a}) ∝ 1.65 (10)

Integrating equation (9), (10), (11), (12), the conditional
probability P ({x = a}|e) of node X given all the occurrence
of evidences can be calculated as:

P ({x = a}|e) =
P ({x = a}|ep)P (ec|{x = a})

P ({x = a}|ep)P (ec|{x = a}) + P ({x = a}|ep)P (ec|{x = a})
= 0.8639

(11)

and the conditional probability of P ({x = a}|e) is :

P ({x = a}|e) =
P ({x = a}|ep)P (ec|{x = a})

P ({x = a}|ep)P (ec|{x = a}) + P ({x = a}|ep)P (ec|{x = a})
= 0.1361

(12)

Conducting the results of the equation (13) and (14), we
can see that under the circumstance of the given informa-
tion, agent can easily tell the channel accessibility. Although
the given parts of evidences may be inaccurate, the status of
channel accessibility can be clearly inferred in terms of likeli-
hood probabilities. This proves that our proposed model can
certainly give a precise inference when agent have compre-
hensive information. Note that if evidence is more precisely
given, the more reliable our model will perform.

5 Simulation Results
In this section, we formulate some simulation in order to ver-
ify the effectiveness of our proposed BN scheme. Our overall
aim is to best predict the channel accessibility for SU. The
simulation is constructed as follows. For simplicity but gen-
erality, the CR network contains 1 agent base station and 1
SU. Within the cover range of the agent base station there are
10 channels which are allocated to 10 PUs respectively. All
channels are assumed to have the same bandwidth. Accord-
ing to the assumption of the parent nodes above, we model
10 channels using different parameters in order to show the
distinction between them. And the PU model is subject to
continuous time markov process. Simulation lasts 2000 sec-
onds. The spectrum sensing module of our proposed agent
base station will notice the change of the environment and
real-time update the channel accessibility, and use the QoS
to adjust the channel accessibility. Through iteration, the a-
gent base station will predict the channel accessibility more
precisely. We separately simulate the BN network with and
without the QoS of the cognitive to see if the prior knowl-
edge works well. Also, we compare the result of our pro-
posed scheme with the Reinforcement Learning method in
[30] and opportunistic method. The probability of success-
ful transmission plot is shown in figure 5. The performance
curves are averages of over 500 Monte Carlo iterations. It
is obvious that the RL method performs best which con-
ducts its optimal policy during trial-and-error. This method
works well but the learning process lasts long. And during
the learning process, this method obtaine the optimal poli-
cy through an exhaustive search of all possible joint actions,
which is not effective. As we can see from the BN2 curve,
the curve depicts that our proposed BN network only with
the prior knowledge learns faster than the RL method. How-
ever the eventual performance after the initial learning phase
is worse than RL method. This gap shows the difference be-
tween prediction and the trial-and-error method. We sacrifice
some QoS to greatly improve the effectiveness of our system.
And at the end, the RL method reaches nearly 96%, the B-
N only with prior knowledge reaches 82%. When we add
the QoS to help predict the channel accessibility, as shown
by curve BN1, the performance of our proposed scheme rise
to about 88%, which shows the necessity of the contextual



Figure 5: Probability of Successful Transmission of the 4 dif-
ferent methods in the cognitive network. The BN1 represents
the proposed method. BN2 is the method without the QoS
contextual inference. The RL represents the reinforcement
learning proposed in [30]. The Random curve represents that
the agent base station access the channel using opportunistic
way.

way of updating the channel accessibility. And the probabili-
ty of successful transmission of opportunistic way of access-
ing the channel finds on average 46%. Figure 6 depicts the
channel switch times of different methods. In figure 6, the
proposed BN1 method shows the best performance amoung
all the methods. We observe that the RL algorithm choose to
trade off the channel switch times with the probability of suc-
cessful transmission. The performance is roughly 55 times
after the initial learning phase. Still the learning phase lasts
more than 150 iterations, which shows that the RL method
have a long learning phase to catch up with the BN method.
And the BN2 method has slightly worse performance than the
BN1 method. Moreover, the opportunistic method shows its
unstablity, which shakes between 70 times to 90 times.

The simulation results shows that our proposed method has
a short learning phase. BN method can fastly come into use
with a good performance. The RL method shows the best
probability of successful transmission, however performing a
lot of channel switch which will cost the switch delay to affect
the QoS of SU. And during the comparison between the BN1
and BN2, we can see that the QoS can help inference the
channel accessibility. Hence, the BN channel accessibility
inference method shows the effectiveness.

6 Conclusions
In this paper we propose a bayesian network based multi-
agent railway communication modeling for channel accessi-
bility, using a fusion of prior and validation information. The
alternate approach for the agent base station can easily infer
the channel accessibility for the train in railway cognitive ra-
dio environment. Due to its briefness, this approach can be
easily deployed in the base station to ensure the communi-
cation quality for train control or for civil use. Future work
can be directed to further investigation on machine learning

Figure 6: Channel Switch Times of the 4 different method-
s in the cognitive network. This QoS is different from the
indicator in Figure 5. Channel switch will cause a lot harm
to the communication quality, including switch delay, more
power consuming during reconnection, even connection lost.
Our proposed method can greatly reduce the channel switch
times.

paradigm in railway cognitive radio.
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