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Abstract. This paper presents an approach to context-aware assisting
systems that reuse user’s personal experience as an alternative to tradi-
tional systems having an explicit context model associated to reasoning
capabilities on this model. This approach proposes to model the use of the
environment through interaction traces representing user’s experience
and different processes to manage user’s traces intended to be exploited
for later reuse. A user’s assistance is based on the reuse of past traces
that are semantically similar to the current sequence of interactions rep-
resenting the current context of the user. The assistance is based on the
identification of recurrent task signatures, which are sequential struc-
tures representing typical tasks. These signatures are user-centric since
they have been interactively elaborated in accord with the user himself.
This paper mentions some possible applications in terms of experience-
based user assistance and makes a comparison of this approach to the
case-based reasoning paradigm (CBR).1

1 Introduction

To better assist a user in his tasks, a good knowledge of what the user is doing
and what constitutes his environment is required. A system that fulfills these
requirements is called a “context-aware” system. Dey and Abowd [1] give the
following definition of a context:

A context is any information that can be used to characterize the situa-
tion of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including
the user and applications themselves.

To be context-aware, it then makes sense to first define a context model
that expresses what contextual information represents for the best a situation,
secondly to instanciate this context model for each situation, and thirdly to
perform reasoning tasks about this context instance. This paper proposes a dif-
ferent approach to provide a contextual assistance to the user, where the context
1 This research is supported by the french National Research Agency (ANR) as a

contribution to the project PROCOGEC (see www.procogec.com)
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is modelled on the fly, i.e. only when the situation requiring assistance appears.
It consists in modelling user’s interaction traces and in reusing them to gradu-
ally build a knowledge base of typical and abstract situations that could require
an assistance. The user is involved in this building process, which enables a
high user-centricity level of contextual information, and then a more relevant
assistance system.

In Section 2, we describe some issues in context modelling and reasoning
techniques, and explain how our approach brings new solutions to these issues.
Section 3 gives definitions and models for concepts related to interaction traces
reuse. The assistance process that collects interaction traces, abtracts them with
the user’s help, and reuses them to provide a contextual assistance is developped
in Section 4. Section 5 is a discussion on our approach, and Section 6 concludes
and draws some perspectives.

2 Limitations of usual techniques in context-aware
assistance

2.1 The issue of modelling the context a priori

Considering the definition of a context given in [1], a natural approach to the
conception of context-aware systems is to elaborate an expressive context model
that takes into account every element of this definition. Reasoning techniques are
then employed to infer knowledge that can be usefull for the assistance system.
The task of modelling the context is usually performed by an expert of the user’s
activity. An ideal context model would have its instances (called context objects)
containing every relevant details of each real situation of the activity. In a way,
the expert temporally takes the place of the user and tries to imagine what
entities and what actions of the activity are considered significant by the user.

This approach is quite paradoxal, as it freezes the definition of a context
before the activity starts. We think that the context’s definition cannot entirely
be known a priori, mainly because it can evolve from one situation to another.
Even if learning techniques can be used to infer a new context model from new
situations, there is still another annoying issue : there is a loss of information in
applying the same model to every situation. Indeed, each situation is unique, and
observing a situation from the point of view of the context model potentially
approximates some details that could have been usefull for assisting the user
in a particular situation. This refers to the more general well-known issue of
approximating the real world with models, and we think it is the reason why
applying these methods to context awareness is not satisfying enough.

2.2 The issue of infering user-centric information

In [2], the authors propose to define the context model so as it answers the
six contextual questions “who”, “what”, “when”, “where”, “why”, and “how”
(5W1H). It is then argued that the obtained context model is a user-centric
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context, where user-centric means containing contextual pieces of information
as the user perceives them. A context that is user-centric potentially improves
the relevancy of the context-based user assistance system. If filling the context
object with information about “who”, “what”, “when” and “where” from sensor
data seems quite direct, it gets more complicated with how the user is doing
his current activity and even more with why he is doing it. Indeed, ongoing
processes are only sensorable at a very factual level and user’s intentions are not
sensorable at all. All the information we can really obtain from sensor data are
clues of what the user intends to do, but never the real intentions. The expert
can define rules to infer user’s intentions from sensor data, but these rules are
not very precise and can sometimes infer wrong. Knowing at a hight level of
abstraction how the user is currently doing his activity and why he is doing it
this way would be a precious information to build a relevant assistance, but this
is still an important research issue.

2.3 The issue of abstracting information from sensored data

In a survey on context-aware systems [3], Baldauf and Dustdar point out that
most context-aware systems have the same multi-layer architecture. Sensors are
set up in the environment and the first layer consists in sensoring the envi-
ronment and user actions to provide context information for upper layers. The
second layer gives a uniform access to raw data coming from heterogeneous
sensors to upper levels, mainly for modularity purpose and convenience. For
example, information coming from a GPS and another position sensor can be
accessed via a single getPosition() method. In the third layer, sensor data,
which are often too technical and too verbose, are transformed into information
at a higher abstraction level. The reason is that context-aware systems will need
contextual information in a more meaningful form to enable contextual reason-
ing. For example, the position coordinates of a user and his surrounding objects
can be transformed into nominal attributes with possible values like closeTo, or
farFrom, which would give more semantics about the current context to upper
levels. The fourth and the fifth layers reuse the context information produced by
level three to govern the behaviour of the context-aware system. A typical kind
of behavior is to provide an assistance to the user like displaying information
about surrounding objects, recommending an action, automating the current
task, etc.

The degree of relevancy of a context-aware system strongly depends on the
third layer: the abstraction layer. The critical question is “how to get high level
information from low level data?”. Hilbert and Redmiles state that there are
six levels of abstraction in interactions between a user and its environment
[4]. Lowest levels describe very factual events like gazingDirectionChanged,
fingerMoved, etc., while highest levels describe tasks and goals (e.g. buyingDVD,
readingNews). Interactions of a given level are composed of interactions of the
level below. For example, givingAddress is composed of events selectingField,
typingAddress and clickingOK. Similarly, clickingOK is composed of events
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movingMouseOnOKButton and pressMouseButton, etc. The only interaction lev-
els that can be sensed are the lowest ones, but the highest levels are the most
useful for context-aware decision-making. A context-aware system realizes this
abstraction by instanciating the context model into context objects from sensor
data, following certain predefined transformation rules. Sometimes these trans-
formation rules are not reliable and the abstracted information infered by these
rules might not be totally precise.

2.4 Our interaction-based approach of context-aware assistance

In our approach of context-aware assistance, we aim at proposing a solution
to the three issues stated above. The idea is, instead of modelling a priori the
context, to model the user’s interactions with the environment. In other words,
the system has no context object to reason about, but only interaction traces
of the user’s current and past activity. An interaction trace describes the user’s
activity: what actions he has done, what objects have been impacted, the date
and time of actions, the roles of potential other users, etc. Thus, contextual
information (who, what, when, where) is embedded in interactions traces, and
reasoning on interaction traces comes to implicitly reasoning on context. But
with this approach, the “how” is also taken into account since all user’s actions
and their relative order are considered. To provide a context-aware assistance to
the user, the system compares the sequence of current interactions (the current
trace) to past sequences of interactions (past episodes), and reuses these past
episodes. Many types of assistance based on interaction traces are possible. For
example, in [5], they are interactively navigable by the user in order to improve
his reflexivity. We clarify in Section 4.3 what kind of assistance can be provided
by reusing interaction traces.

This approach is qualified as interaction-based since we put the focus on
modelling interactions rather than on modelling the context directly, even if
the current context is implicitly contained in current interactions. With this
approach, the uniqueness of the context of every situation can potentially be
taken into account when traces are reused, and there is no information loss by
trying to fit data coming from sensors to the context model. But we still face
the abstraction problem; traces obtained from sensors are low-level. To get a
more abstracted interaction trace, sequence mining algorithms like [6] search for
recurrent episodes in low level traces and expose them to the user. The user
then tags the episodes he can recognize as meaningful to him. Observations that
compose each episode are transformed in a single, more abstracted observation
that makes sense to the user. With this interactive approach of abstracting from
sensor data, we also address the issue of user-centricity, since the user is involved
in the definition of abstracted traces.

A system that handles interaction traces is called a Trace-Based System
(TBS ) [7]. A TBS provides tools to model interaction traces, to collect inter-
action traces in raw format from sensors and to transform them into the TBS
format. Trace transformations are also handled in a TBS: filtering, rewriting,
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merging, etc. A request system enables an user to query the TBS and to ex-
tract transformed traces, that can be visualized through a visualization system
or processed out of the TBS (cf. Figure 4). In TBS terms, the focus of this paper
is to explain an interactive approach that defines “good” trace transformations,
where “good” means that resulting traces are abstracted and user-centric, which
enables a more relevant context-aware assistance.

3 Interaction-based context modelling

This section describes different concepts that need to be introduced before going
into further details in the interactive abstraction process. Examples and figures
are taken from a user working on the Content Management System (CMS) Col-
laborative ECM 2. So, our environment is a computer system, which has been
set up with sensors to track interactions using, among other technics, Javascript
and auditing3.

3.1 Modelling interaction traces

An interaction trace is a sequence of events. Each event can have many rela-
tions to some entities. The events represent actions performed by an user or the
system, while entities represent objects that exist in the environment. Relations
make the bridge between actions and impacted entities. Each event has a times-
tamp of the date when the event occured. The set of events of an interaction
trace that occur between two dates d1 and d2 is called the section (d1,d2).

A trace model is a set of concepts and relation types that expresses knowledge
about elements in the interaction trace. Each action, entity, and relation is an
instance of an element in the trace model. Typically, OWL can be used to build
the trace model. Figure 1 shows a trace model example. A trace section example
that is an instance of this trace model, is shown on Figure 2.

For the sake of simplicity, very few possible user actions are reified by event
classes in the trace model of Figure 1. The class Navigation is instanciated when
the user navigates from a page of the CMS to another one; CreateContent is
instanciated each time a new content is created in the CMS. The example trace
of Figure 2 can be read as follows. The user damiencram navigated through
pages index.jsp, importContent.jsp and setContentProperties.jsp, then
created the content myContent, and finally navigated to page contentList.jsp.
Circles on Figure 2 are other events that occured during this process but not
taken into account in this simple modelling example.

3.2 The task signature

The task signature concept has been introduced in [8]. It is a structure that
represents a typical task in which a user can be engaged. It specifies what events
2 Collaborative ECM is a collaborative CMS developped by our research partner

Knowings (www.knowings.com)
3 See the page “Audit” on Alfresco’s wiki (http://wiki.alfresco.com/wiki/Audit)
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Fig. 1. An example trace model. Navigation and CreateContent are event classes
(subclasses of the general event class Event); User, Content and Page are entity
classes (subclasses of the general entity class Entity); hasActor, fromPage, toPage

et createdContent are relation types.

Fig. 2. A section of an interaction trace instanciating the trace model of Figure 1
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(or event types) and entities (or entity types) are involved in a task, and how
they are all temporally and structurally related to one another.

In this paper, a task signature is a set of event declarations, entity declara-
tions, relations as previously defined, and temporal constraints. An event decla-
ration is either an event or an event class; an entity declaration is either an entity
or an entity class. A temporal constraint is a pair of event declarations (A, B)
meaning that A must occur before B. In the case an event/entity declaration is a
class, it acts as a structural constraint. An entity (resp. event) e satisfies an en-
tity declaration (resp. event declaration) E if E is an entity instance (resp. event
instance) and e equals E, or if E is a class and e is an instance of E. A section of
an interaction trace is said to match a task signature when events, entities and
relations of this section statisfy structural and temporal constraints. A section
that matches a task signature is called an occurrence of this task signature.

Figure 3 gives an example of a task signature for the task “adding a content to
the CMS”. It defines a task signature in which the same user ?x (whoever the user
is) navigates from import to setProp, creates any content ?y, and navagiates to
list. The section of Figure 2 matches the task signature of Figure 3. In other
words, it contains an occurence of this task signature. This task signature can
be interpreted as “user ?x creates the content ?y”. For example, an occurence of
this signature having ?x=User:damien and ?y=Content:mrc2008.pdf would be
read as “damien adds the content mrc2008.pdf to the CMS”, another occurence
having ?x=User:béatrice and ?y=Content:mrc2008-rev.pdf would be read as
“béatrice adds the content mrc2008-rev.pdf to the CMS”.

Fig. 3. Task signature of the task “adding a content”. The entity declaration User:?x

contraints occurences to have entities of class User as target for relations hasActor. The
entity declarations import, setProp and list contraint occurences to have respectively
importContent.jsp, setContentProperties.jsp, and contentList.jsp as relations
fromPage and toPage.
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3.3 Abstract classes and explained task signatures

In a way, a task signature represents an event that is more abstract than the
ones it is composed of. Having a trace model and a task signature based on this
trace model, it is possible to define a new event class in the trace model. For
example, the task signature of Figure 3 could be reified in the trace model with
the event class addContent having a relation type hasActor to the class User and
a new relation type newContent to the class Content. This operation comes to
reformulating the events of the task signature into a single more abstracted event
class. Each time the signature occurs in the interaction trace, the occurrence
could potentially be replaced with a single instance of the more abstracted class.
In this paper, we reuse the term ExTaSi (Explained Task Signature), introduced
in [8], to refer to a task signature that has been transformed into a class by the
user. In [8], such a signature is qualified as “explained” because the user can also
add an annotation to it in natural language to explain its meaning.

4 Interactive trace abstraction for context-aware
assistance

Figure 4 shows how the context-aware assistance is made from interaction traces.
The primary trace is built by the TBS from raw data that are collected from
sensors (1). The primary trace is then abstracted under the control of the user
interactively in the transformation system (2), an assistant system helps the
user in his tasks by reusing abstracted traces (3). Following subsections describe
these three steps into details.

Fig. 4. Context-aware assistance based on interaction traces reuse
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4.1 Trace collection

The trace collection (cf. Step 1 on Figure 4) consists in collecting interaction
traces from all the sensors and integrating these data into a single interaction
trace called the primary trace. This is the job of the Trace Collection System
(TCS), which has the knowledge of the primary trace model and instanciates
concepts and relations of this trace model with observations made from sensor
data. Each sensored interaction in the environment triggers the TCS, which in
real-time updates the primary trace with new observations. The primary trace
is a single sequence of observations, containing both current (or contextual)
information about what happens in the environment and information about
what has happened in the past.

This level of information of the primary trace is like Baldauf and Dustdar’s
level two (cf. Section 2.3) in the sense that the primary trace from now constitutes
the unique access to sensored data from the environment. It is very important
to note that the primary trace model is usually not abstract at all, collecting
very fine grain events, and letting the job of aggregating and abstracting to the
transformation system.

4.2 Interactive trace abstraction

Abstracting traces (cf. Step 2 on Figure 4) is a process that is actually both
interactive and iterative. It is interactive in the sense that, as argued in Section 2,
the user must be involved in it so as to be user-centric. It is also iterative, because
several transformations can be applied to get a satisfying abtraction level. On
Figure 4, two trace transformations are represented: transformation τ1 abstracts
the primary trace into Trace 2, which in turn is abstracted into Trace 3 by τ2.
Figure 5 zooms on a single iteration τk. An iteration is performed thanks to two
complementary separate phases: the trace analysis and the trace transformation.

Trace analysis. The analyze step extracts from Trace k recurrent task signa-
tures, using techniques of “Frequent Episode Discovery” in an event sequence
[6], and suggests them to the user. Then, the user looks at suggested candidate
signatures and validates the ones that make sense to him as ExTaSis. If the user
is not satisfied with the suggested candidates, he can rerun the analysis with
new entry parameters. New entry parameters can be new constraints guiding
the extraction process, like “search for signatures with an instance of class X”,
or “search for signatures with at least two different users” (which is the task
signature of a collaborative task), etc.

Trace transformation. Once the user has found ExtaSis from Trace k, the
tranformation step reformulates each occurence of an ExTaSi in Trace k into
an abstract event in Trace k+1 (cf. Ext1 and Ext2), while every other non-
matching observations in Trace k stay unchanged. In terms of trace models,
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Fig. 5. An iteration of the interactive trace abstraction process.
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TMk+1 is built upon TMk by adding abstract classes that are each made from an
ExTaSi, as explained in Section 3.3 (like Ext1 and Ext2 in Figure 5). Within
the TBS framework [7], this operation consists of defining a transformation rule
τk by specifying the pattern to transform (the task signature) and the result
type (the abstract class). The TBS then does the transformation job for us.
This transformation phase results in a new trace Trace k+1 that is more user-
centric, in the sense that it describes the user activity from the user’s point of
view. It is then a more readable and understandable trace to the user.

4.3 Signature-based context-aware assistance

Back to Figure 4, the last part of the context-aware assitance is the Assistance
System itself (cf. Step 3 ). It is composed of an assisting agent that observes the
current interaction trace through the TBS’s request system. When the current
trace matches with the beginning of an ExTaSi, the assisting agent requests the
TBS for all occurences of this ExTaSi in the interaction trace. These occurences
can be ranked according to a similarity measure to the current trace. An assis-
tance is provided to the user based on the past most similar occurences of his
current task.

This assistance can be of many types. For example, a task automating system
could propose to the user to finish the current task. Of course, this kind of
system can only be set up in environments in which possible actions can be
easily automated, typically a computer. Another type of usual assistance is to
inform the user that some actions, like “look at this document” or “contact this
person”, could help him to better achieve his goals. These types of assistance
systems are based on the current task recognition as the beginning of an ExTasi.
The assistance then consists in recommending to the user what is coming next
in this ExTaSi. The problem is that an ExTaSi is a general form of a task,
which means that some of its components are concepts and not instances, and
consequently a strong adaptation effort to the current context has to be made
by the system.

There is another approach to assistance that would fit better our system:
it consists in making visible to the user in real-time past occurrences of the
recognized ExTaSi, enabling the user to visualize complete stories similar to
what he is currently doing. This could give an access to every entities that were
involved in these past stories, and then potentially provides additional task-
contextual information to the user. The importance of storytelling in human
reasoning is well-known and advantages it could bring to the human activity is
getting aknowledged. That is why systems trying to facilitate storytelling, like [9],
have started to appear. In [10], the authors argue that humans have a narrative
indexation of documents, and that a narrative description of documents is more
helpful to the user than a usual classification. Our system can provide such a
storytelling assistance based on ExTaSi recognition.
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5 Discussion

We have seen that the relevancy of an assistance system depends on the user-
centricity of input traces, but it also strongly depends on the adaptation that
the assisting agent is able to perform from past occurences to current context.
This adaptation issue is already known in Case-Based Reasoning systems to be
both quite difficult to formalize and critical for the usability of the system [11].

Another interesting issue is organizing ExTaSis. The problem is that an Ex-
TaXi stands for several similar occurences in the trace, but more precisely each
of these occurences tells actually a different story about the user’s activity. We
expect there will be a need for expressing that an ExTaSi is more specific than an-
other one, e.g. expressing that “adding the minutes of a meeting” and “adding
a project plan” are both more specific ExTaSis of “adding a content”. These
concerns have been addressed by Roger Schank in his theory of dynamic mem-
ory [12] to describe the human memory, where Memory Organization Packages
(MOP) are structures that hold both concrete experiences (scripts) and more
general ones in a single hiearchy that is constantly updated. Historically, this
theory gave birth to the paradigm of Case-Based Reasoning (CBR) [11], which
raised a great interest in the community of AI.

Existing literature gives some examples on CBR being a convenient paradigm
to context-awareness, which is mainly due to the fact that contexts and CBR
cases are similar in their definitions [13]; CBR then offers the possibility of
comparing and reusing contexts. However, CBR systems can only focus on well-
defined problems. In many environments, we don’t have the knowledge of what
the user will precisely intend to do a priori. We are then unable to define what
will be the user problems, and consequently unable to build a CBR system. The
system we propose does not need a problem or a case to be modelled beforehand.
In a way, it is more a method that supports the emergence of problem defini-
tions from usage. Indeed, each ExTaSi can be seen as a problem definition as it
describes at a high level of abstraction what a task consists in. It also contains
information about why a user realizes this task in terms of user intentions (cf.
Section 2), as an ExTaSi has been labelled in natural language by the user.

6 Conclusion

In this paper we presented an approach to user’s assistance based on the ex-
ploitation of interaction traces of the user’s activity. We described a model of
interaction traces expressing user’s interaction with his surrounding entities, and
proposed a three-steps process that reuses traces for a contextual assistance:
collecting traces from sensors, abstracting traces, and assisting. Two steps are
performed in interaction with the user : the discovery of typical task signatures
that are interpreted and validated by the user and the context based assistance
like automatization of tasks, or action recommendation under the control of the
user.

Further work has to be done to precise what kind of transformations are
performed and what granularity level has to be chosen for a better reusability
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and understandability of traces. Other works will consist in defining different
kinds of assistance scenario and in studying how a CBR cycle would reason
about traces. In a CBR system, a problem part and a solution part have to be
identified as well as a request that are generally not clear in a current context.
Such a CBR system has to associate knowledge to each kind of signature and
learn from usage to enhance its reasoning capabilities by interactively acquire
knowledge about how to reuse better traces.
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