
Adapting the Multi-Desktop Paradigm Towards
a Multi-Context Interface

Sven Schwarz, Malte Kiesel, and Ludger van Elst

German Research Center for Artificial Intelligence DFKI GmbH,
Knowledge Management Department

Trippstadter Straße 122, 67663 Kaiserslautern, Germany

{firstname.lastname}@dfki.de

Abstract. Knowledge workers are typically processing multiple tasks in
parallel. As humans can concentrate and work on but one task at a time,
users have to switch between them. The required task switching causes a
high cognitive load and decreases efficiency. To reduce the costs of these
task switches, we have to find ways to cope with a multitude of dormant
tasks the user might switch to again. The challenges here are supporting
the user to resume work on a (former) task. In this work, we employ
the known multi-desktop paradigm and extend it to a task-switching
interface. Each of the multiple desktops is identified with one individual
context of the user. Each virtual desktop consists of a different set of
applications with open documents and their positioning on screen. This
helps the user to separate individual tasks and allows easy recovering
when switching back.
As we explicitly want to allow switching back to finished tasks in order
to reuse the knowledge captured there, the multi-desktop paradigm has
to be extended to cope with a multitude of desktops (hundreds rather
than four or six). This also requires a better user interface for discovering
the right desktop when switching back to a recently paused task.

1 Working on multiple tasks “in parallel”

Knowledge workers are typically embedded in a multi-tasking environment:
Nowadays most of the workers are working for multiple projects or enacting
multiple roles for the company. But even one single project often splits into
various separable (sub-)tasks.

In this multi-tasking environment, the work can not be done in a batch-
job style. Rathermore, the user is often pressed to process them interleaved.
While humans can cope well with multi-tasking of simple every-day tasks like,
for instance, jogging in the park, singing, looking at flowers, and checking the
time using the watch, humans can only concentrate on one single task that needs
the user’s full attention [2, 4]. So, frequent switching back and forth between the
tasks is done—sometimes these switches are done intentionally, sometimes due
to interruptions (e. g., by other workers, by incoming mail, etc.). According to
user studies [6] a knowledge worker’s job is interrupted about four times per
hour. The authors define interruption as follows:

63 WS MRC - HCP-2008 - Third International Conference on Human Centered Processes



“We defined an interruption to be a synchronous interaction which
was not initiated by the subject, was unscheduled and resulted in the
recipient discontinuing their current activity.”

Switching from the current task to an older task leads to temporary confu-
sion of the user and costs at least some time getting back to the point where he
recently stopped working on that old task. He has to remember the last status,
the last actions, the imminent (sub-)goal, etc., as well as rearrange the work-
place (find and reopen relevant information items. . . ) to suit the new task—not
to mention the cost of tidying up (closing) and storing the old workplace config-
uration (e. g., setting bookmarks), that is, important open documents, scrolled
to currently viewed/worked on passages, etc. A user study [2] has shown that
there is a need to support frequent task switching. Especially switching back to
a former task should be assisted:

“The key findings gleaned from the diary study, as well as explicit
comments from participants, shaped our pursuit of designs for user in-
terface tools that might better assist users with task switching. The
results and comments especially call out the need for software support
to ease the challenge of switching back to all projects, but especially to
recovering long-lived projects after interruptions.”

In the following, we take a look at existing technologies that assist the user
during task switching and highlight points that might be enhanced using the
context notion.

1.1 Supporting multiple tasks using virtual desktops

Desktop extensions that allow multiple (virtual) desktops to be used and to
switch between them are quite common. An analysis of virtual desktop usage [7]
has shown that many people partition their computer work using a multi-desktop
tool. Traditional multi-desktop tools provide a handful of “virtual desktops”
which people typically use to separate different computer tasks. For example,
the first desktop is used to read and write business emails, the second desktop
is used for software development, the third desktop is used for an inquiry along
with creating slides of its results, and the fourth desktop is used for private mail
and web browsing.

Typically, it is up to the user to decide what way of using desktops is ap-
propriate. Some users might decide to use one desktop per application; others
might choose to use one desktop for one task (i.e., use a mix of applications per
desktop). We focus on the latter case. Here, each desktop is identified with one
individual context of the user. Every desktop consists of a different set of applica-
tions, open documents, and their positioning on screen. This way, using multiple
desktops instead of one desktop reduces actions like closing and re-opening win-
dows just for the sake of keeping the workplace clean. This is analogous to using
multiple physical desks in the real world: papers and material can stay on the
desks—there is no need to tidy up the desk before working on a new (or another)

64 WS MRC - HCP-2008 - Third International Conference on Human Centered Processes



task if you can simply use another desk for the other task. By removing these
administrative actions the worker can concentrate on the work itself.

However, the number of virtual desktops typically is limited to relatively
few—otherwise selecting the appropriate virtual desktop becomes tedious. Since
in the example above desktops are identified with contexts, we propose to add
facilities to search for contexts in order to switch desktops.

1.2 Using desktop search to rediscover old tasks

Desktop search has become a well-known feature in the last years. On the desk-
top, the typical use case of search is to rediscover documents1 that have already
been read in an older context. One typical workflow here is to (re)start working
on a task, using desktop search to rediscover documents, rearranging the work-
place (along with viewing applications) to suit the task at hand, and to start
processing documents. It is important to note here that in this example, the user
effectively wants to reactivate an old task typically—or at least a task that is
very similar to the old one the document he searched for was used in.

In this example, using desktop search is merely a kludge—desktop search
is used because the notion of documents is clear and desktop search is widely
available. Here, the user actually did not want to search for a single document but
wanted to (re)create a workplace configuration—of which the opened documents
are only a part of. We propose to extend desktop search to allow searching for
(task) contexts then, using documents found in keyword search as pointers to
potentially interesting contexts and workplace configurations.

2 Multi-desktop paradigm extensions

While traditional multi-desktop frameworks provide only a small number of desk-
tops, people tend to use them to separate applications or classes of applications
rather than their manyfold concrete tasks. This means, each desktop is used as
some kind of software environment to solve generic tasks rather than to support
concrete contexts. For example: Writing and reading emails is used in a lot of
the user’s contexts, but still the email client is “hosted” on one single desktop.

Our approach of adopting the multi-desktop paradigm emerged from the idea
to assist with the more technical aspects of task switching, namely presenting
the right applications and documents for the task at hand. However, the tra-
ditional multi-desktop metaphor is not yet sufficient to handle the whole set of
a user’s different contexts. In the rest of this section we present the respective
requirements together with envisioned extensions.

2.1 Large number of desktops

We envision supporting the user with one desktop for each of his tasks. This
means, whenever the user starts off a new task, a new desktop is created as well.
1 Note that desktop search differs from web search here: On the web, search is far

more often used to find previously unknown information.

65 WS MRC - HCP-2008 - Third International Conference on Human Centered Processes



To be more precise, it is actually the other way round: As the multi-desktop
metaphor is the envisioned interface to support task-switching, the user starts
off a new task by explicitly creating (and switching to) a new desktop. Hence,
the multi-desktop paradigm has to be adapted to cope with a large number of
desktops. Moreover, the set of desktops is not stable but continuously increases
as new user tasks emerge.

2.2 Persistency of desktops

The multi-desktop paradigm has to be extended to allow persistency of the
desktops. First of all, even in the future the number of open applications and
application windows will be restricted by processor power and memory. Han-
dling hundreds of desktops with at least one open application (window) per
desktop will soon reduce the computer’s performance. But besides this minor
performance problem the computer will have to be restarted from time to time.

In order to ensure long-term conservation and recovery of a desktop’s state,
technical issues have to be solved: The set of open application windows, their
geometry on screen, and their internal states (especially opened documents)
describe a desktop’s state. So, a mechanism and user interface is needed to
retrieve, store, and recover desktop states.

The current implementation can not guarantee these persistency issues for
every application. Instead, we have focused on conservation and recovery of file
explorer windows (open file directories) and web browser windows using Mozilla
Firefox. Open file explorer windows can be handled quite easily while restoring a
browser window required the development of a special recovery plugin for Mozilla
Firefox. This works quite nicely in our prototype, including recovery of scrolling
positions of previously opened web pages.

We currently neglect the problem arising from multiple versions of a doc-
ument to be shown in an application window. At the moment we identify a
document only via its location on the hard disk or on the web. Due to the lack
of a universal, time-oriented versioning system, we store and restore a document
using its location only. Hence, when restoring a desktop from the past chances
are that the recovering process reveals documents with newer versions than orig-
inally present. However, before solving this versioning issue, we first deal with
the methodological aspects of the extended multi-desktop paradigm: conserving
and restoring desktops as well as respective user interfaces.

2.3 Relating desktops with the user’s world

In the Mymory project2, a so-called PIMO (Personal Information Model [9])
provides a vocabulary for describing information elements on an individual desk-
top, thereby comprehensively reflecting a user’s personal view on his information
landscape. Similar to topic maps, the PIMO defines relatively informal concepts

2 http://www.dfki.de/mymory/

66 WS MRC - HCP-2008 - Third International Conference on Human Centered Processes



and relationships (related-to etc.) as well as more formal aspects using the expres-
sivity of RDF/S (subclass and subproperty relationships). The Mymory PIMO
offers rather general concepts of knowledge work (Person, Organization, Loca-
tion, Document, Topic, etc.). A user typically extends this upper model with
more specific group or personal concepts (e. g., concrete project types or organi-
zational structures). Most important are the user’s instances of these concepts
(e.g., concrete persons, or topics).

PIMO classes and instances can both be used for annotations—hence we
define and use the term PIMO “concept” for both: a class or an instance. In
contrast to standard Web 2.0 style tagging that uses binary relations, we use a
weight between 0.0 and 1.0 defining to what extend this annotation holds for
each concept annotated with a desktop. A strong relevance of this concept for
the desktop is indicated by 1.0; a lower value defines a weaker relevance. On
the one hand, these weight values can be set and adjusted by the user. One the
other hand, they are estimated and adapted by an automatic context-awareness
component (see section 2.4). These weighted annotations are used in the user
interface: For each desktop its weighted concept annotations are presented in
form of a “tag cloud” as it is used in typical Web 2.0 applications (see figure 2).

For each desktop we store its individual set of weighted annotations in a
vector, holding the relevance value for each PIMO concept. We use a dynamic
vector for this, such that a vector’s dimension increases whenever a relevance
to new PIMO concept emerges. Figure 1 shows how the concepts in the PIMO
are mapped to an index used in a PIMO vector describing a user’s context.
We end up having such a vector for each desktop, which enables simple vector
arithmetics to find, organize, and relate desktops. For example, a commonly used
cosine measure is applied as a similarity measure between desktops.

Annotating desktops with these concepts allows to search for and to filter
desktops with these concepts. Hence, a relevant desktop to switch to can be found
quite easily. Moreover, these concept annotations classify the desktops and enable
a similarity measure between desktops. This is used to display “similar” desktops
to the current desktop, which facilitates the reuse of information buried in a
desktop with similar classification (similar annotations). The similarity measure
can also be used to cluster the desktops or to generate and render a 2D map of
the desktops (self-organizing feature map).

2.4 Context-awareness automatically adapts desktop annotations

These annotations are provided automatically by the Mymory context ser-
vice. Automatic user observation generates a continuous stream of contextual
evidence which is then fed into a context elicitation framework. That way,
the user’s context is captured without needed intervention of the user. The
User Observation Hub3 is an open source Java project responsible for the gath-
ering and distribution of user observation data. Technically, this is achieved by

3 http://usercontext.opendfki.de/wiki/UserObservationHub

67 WS MRC - HCP-2008 - Third International Conference on Human Centered Processes



Context Elicitation

PIMO conceptsUser
Observation

Hub

current context

MyDesk
Multi-Context

Interface

application
events

current
desktop

contextually relevant
concepts

Fig. 1. Automatic user observation feeds the context elicitation. As desktops are de-
scribed with these contexts, the desktops adapt according to the user’s behavior.

observing the usage of a number of applications such as the web browser and ed-
itor using plug-ins and keeping track of the events within these applications. The
Mymory context service makes use of these events and the content displayed in
the applications and matches them against a number of rules that are partially
autogenerated from the user’s PIMO. That way the user’s context model is filled
with weighted estimates of PIMO concepts being contextually relevant. Identi-
fying one desktop with one context leads to automatic contextual annotations
of each desktop as described in section 2.3. A detailed description of the user
observation and context elicitation framework is beyond the scope of this paper.
See [10–12] for an overview on modeling, using, and accessing user context for
knowledge management scenarios.

Figure 1 shows the interaction of the context-related system components:
The user observation on the top-left sends application events to the context
elicitation with which adapts contextually relevant parts the current context.
The concepts used for the context elicitation and annotation are provided by
the user’s own, individual PIMO which you can see at the top of the diagram.
This context is captured using the vector model described in 2.3, that is, for every
context there exists such a vector as it can be seen in middle of the diagram.
As we describe each desktop with its assigned context, a desktop’s annotations
adapt automatically as soon as its context changes. The MyDesk interface on the
right side manages and visualizes the whole set of desktops and controls which
desktop (and hence which context) is active—see the following section for more
details.

68 WS MRC - HCP-2008 - Third International Conference on Human Centered Processes



Fig. 2. A timeline view displays the most recent desktops via a most recent screenshot
and a “tag cloud” of the most relevant concepts.

3 Towards an implementation of a multi-context interface

MyDesk4 is an open source implementation of the adapted multi-desktop
metaphor described in section 1.1. The main parts of MyDesk (i.e., the user
interface and the desktop-switching API) are implemented in Java and, hence,
platform independent. Only a small part (the native code needed to trigger the
desktop switching) is done using C# and .NET (for Windows) and C (Unix).

While the user interface is still under development, prototypical components
have already been implemented. In figure 2 a timeline view displays property
cards for the most recent desktops. Each card shows a screenshot of the last
desktop state (open windows) together with a “tag cloud” showing the most
relevant concepts describing the context of this desktop. As typical for tag clouds,
the degree of relevancy of one concept is shown using the font size. For our
approach the degree of relevancy for one desktop coincides with the activation
level of the concept for the corresponding user context. Currently, the concepts
are ordered according to relevancy. However, as this makes the used font size
redundant we will investigate different ordering strategies (e.g., alphabetical) in
the future. The state of the eye in the top-right corner of such a desktop card
indicates whether this desktop will be observed or not. The user can switch user
observation on/off at any time—this configuration is desktop-specific.

Figure 3 shows a mockup of an envisioned clustering and search interface.
A two dimensional map groups together similar or interrelated desktops. As the
context representation used for the desktops comes with a similarity measure,
automatic clustering of desktops can be accomplished, e.g., via self-organizing
feature map techniques. Additionally, besides these annotation-based relations,
the occurred desktop switches convey information about temporal correlations.
4 http://mydesk.opendfki.de/

69 WS MRC - HCP-2008 - Third International Conference on Human Centered Processes



Fig. 3. A two dimensional map groups together interrelated desktops.

Assuming (potential) causal relations for some of these temporal relations we
can use these for visualization or even clustering, too. However, we believe that
the user may also want to locate the desktops himself, according to his individual
feeling with respect to the relationships between desktops.

A text field in the top-right corner allows successive filtering. An example
result after entering two search terms is shown in figure 4. Only the desktops
relevant to the search terms are visible, partial relevance can be recognized by
a smaller icon size. The important point here is, that the desktops stay at the
same position and irrelevant desktops are hidden. A one dimensional result list
with desktops re-ordered according to their relevance (with respect to the search)
risks the user getting “lost in desktop space”.

We believe that a user will need different visualization and search metaphors
to actually find the relevant desktop. Hence, the user should be free to choose
and switch the visualization. However, selected desktops should still be focused
after changing the visualization. For example: Imagine the user selects a group of
desktops in the clustering/2D map view and then switches to the timeline view to
see when each of those desktops has been accessed recently. Then the previously
selected desktops will still be selected (and hence highlighted) in the timeline
view. He also sees non-highlighted other desktops in between the selected ones.

70 WS MRC - HCP-2008 - Third International Conference on Human Centered Processes



Fig. 4. Only the desktops relevant to the search terms are visible, partial relevance can
be recognized by a smaller icon size.

He could leave the selection as it is, but also decide to unselect some or select
others and switch back to the 2D map view to see if and how they interrelate.

The scalability and usability of such a multi-context user interface depends
on the available options to visualize, filter, and search for desktops. Moreover,
the combinations of different filter and visualization metaphors as well as the
possibility to switch between different metaphors (while keeping the same focus)
will play an important role in finding the right desktop to continue work there.
To be more precise, displaying all available desktops via a 2D map visualization
showing small icons for each desktop is nice to get an overview. However, the
icons are pretty small and will not be sufficient to decide which one to pick.
Besides search and filter mechanisms, the user will feel the need to see more
details—e.g., via zoom and pan. Additionally, filtering out “old” desktops (i.e.,
desktops not visited recently) using a time-slider can reduce the number of desk-
tops to a manageable set.

71 WS MRC - HCP-2008 - Third International Conference on Human Centered Processes



4 Related Work

One of the first systems working with multiple workplaces to support multi-
tasking workers was ROOMS [3, 1]. ROOMS supports new user tasks by al-
lowing the user to create a new “room” (to be used as workspace) for that
task. As the rooms metaphor implies, ROOMS enables the user to connect
“rooms” via “doors”. Assuming meaningful placement, the user can walk around
(i.e., “browse”) related rooms via the user-defined doors. Although the rooms
metaphor seems naturally intuitive and easy to understand, the disadvantage
is, that rooms are connected and interrelated with doors placed manually by
the user. Adapting the rooms metaphor to propose creation of meaningful doors
or using auto-generated doors could improve the scalability. Moreover, ROOMS
does not allow searching for rooms or getting an overview on the whole set of
available rooms.

Task Gallery [8] is another task-oriented virtual desktop manager taking the
rooms metaphor to 3D. The idea is to visualize a three dimensional gallery in
form of a tube. The user’s individual tasks and the corresponding open applica-
tion windows are visualized as images on the walls, floor, and ceiling. The user
can create new tasks there at any time. The 3D presentation allows easy nav-
igation (browsing) between the user’s tasks, intuitive clustering (similar, inter-
related tasks grouped together), and supports as well as utilizes humans’ good
spatial cognition abilities to remember a task’s (geographical) position in the
gallery. However, the user can not interact with these tasks directly at the place
where they are visualized. Instead, actual processing takes place only at one
designated place: the so-called “stage”. Analogously to ROOMS, Task Gallery
also does not show (potentially) related task, nor does it provide any means to
search for tasks or get an overview on the available tasks.

GroupBar [5] and WindowScape [13] solve the problem of many open win-
dows by creating task-specific groups of windows. Switching a task then reduces
to selecting the group of windows that corresponds to that task. Only the win-
dows of the selected group are visible, the rest is hidden. The user interfaces with
a time line visualization of these window groups, which is easy to use and allows
to get an overview on available tasks. However, this approach does not scale for
a large number of user tasks (very old tasks will be difficult to find if the user
does not remember the last access date). Moreover, similarity or relationships
between tasks are not modeled nor exploited to guide the user to relevant tasks
to switch to.

Switching profiles in everyday applications such as web browsers and chat
programs can be seen as similar to switching user context. However, profile han-
dling is quite heavyweight—to switch profiles, applications have to get restarted
typically. This is due to the fact that profiles are intended to allow multiple
users (or one user in different roles) to access the same application without
“polluting” application settings and stored data. Features such as the ability to
bookmark all currently opened tabs in Firefox and therefore capturing much of
the application’s inner state in one bookmark seem to indicate that the need for

72 WS MRC - HCP-2008 - Third International Conference on Human Centered Processes



user context support has been perceived to some degree in end user applications
though.

5 Conclusion

Knowledge workers are embedded in multiple projects. It has been shown that
this leads to many interruptions and task switches per hour, which in turn leads
to a great loss of efficiency. These task switches cannot be removed completely
from the daily work. However, we aim at reducing the high cognitive load arising
due to interruptions in current work. This is done by supporting the user when
adapting the work environment for the next task at hand.

Our approach is to apply and adapt the commonly used multi-desktop
paradigm to be used as a multi-context interface. The main goals of the sys-
tem are

– enabling the user to get an overview over the available contexts,
– showing related contexts for a selected (e.g., the current) context,
– support search for contexts (e.g., search for a context to switch to),
– support resuming a former context by helping the user to remember the last

state of this context—this is the main reason for applying the multi-desktop
paradigm,

– automatic annotation (representation) of desktops/contexts (only with acti-
vated user observation),

– detection of and notification about potential context switches (only with
activated user observation).

First tests show that the combination of context-awareness technology and
multi-desktop metaphor yields an efficient and easy to use user interface to cope
with multiple contexts, especially context switches.

User observation is used to feed an automatic context elicitation service,
which automatically maintains context and desktop representations. This en-
ables an unobtrusive way of keeping track of what a desktop is about and allows
searching, filtering, and clustering desktops.

The large quantity of contexts per desktop demands some extensions of the
multi-desktop metaphor—for example, an arbitrary number of desktops, respec-
tively a more scalable user interface, and the long-term persistency of all desktop
states plus corresponding recovering mechanisms. Although the management and
conservation/recovering of desktops works quite nicely in our prototype, the user
interface is still under development. In particular, some visualization metaphors
have not been implemented yet. An evaluation of our approach is planned at the
end of 2008.

Acknowledgement

The Mymory project is funded by the Bundesministerium für Bildung und
Forschung (Federal Ministry of Education and Research) under grant 01 IWF01.

73 WS MRC - HCP-2008 - Third International Conference on Human Centered Processes



References

1. Stuart K. Card and Jr. Austin Henderson. A multiple, virtual-workspace interface
to support user task switching. In CHI ’87: Proceedings of the SIGCHI/GI confer-
ence on Human factors in computing systems and graphics interface, pages 53–59,
New York, NY, USA, 1987. ACM.

2. Mary Czerwinski, Eric Horvitz, and Susan Wilhite. A diary study of task switching
and interruptions. In CHI ’04: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 175–182, New York, NY, USA, 2004. ACM.

3. Jr. D. Austin Henderson and Stuart Card. Rooms: the use of multiple virtual
workspaces to reduce space contention in a window-based graphical user interface.
ACM Trans. Graph., 5(3):211–243, 1986.

4. Alan J. Dix et al, editor. Human-Computer Interaction (2nd Edition). Prentice
Hall, 1988.

5. V. Kaptelinin and M. P. Czerwinski, editors. Beyond the Desktop Metaphor De-
signing Integrated Digital Work Environments. The MIT Press, 2007.

6. Brid O’Conaill and David Frohlich. Timespace in the workplace: dealing with
interruptions. In CHI ’95: Conference companion on Human factors in computing
systems, pages 262–263, New York, NY, USA, 1995. ACM.

7. Meredith Ringel. When one isn’t enough: an analysis of virtual desktop usage
strategies and their implications for design. In CHI ’03: CHI ’03 extended abstracts
on Human factors in computing systems, pages 762–763, New York, NY, USA,
2003. ACM.

8. George Robertson, Maarten van Dantzich, Daniel Robbins, Mary Czerwinski, Ken
Hinckley, Kirsten Risden, David Thiel, and Vadim Gorokhovsky. The task gallery:
a 3d window manager. In CHI ’00: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 494–501, New York, NY, USA, 2000.
ACM.

9. Leopold Sauermann, Andreas Dengel, Ludger van Elst, Andreas Lauer, Heiko
Maus, and Sven Schwarz. Personalization in the epos project. In M. Bouzid and
N. Henze, editors, Proceedings of the International Workshop on Semantic Web
Personalization, Budva, Montenegro, June 12, 2006, pages 42–52, 2006.

10. Sven Schwarz. A context model for personal knowledge management applications.
In Th. Roth-Berghofer, St. Schulz, and D. B. Leake, editors, Modeling and Retrieval
of Context, Second International Workshop, MRC 2005, Edinburgh, UK, volume
3946 of Lecture Notes in Computer Science, pages 18–33. Springer, 2006.

11. Sven Schwarz and Thomas Roth-Berghofer. Towards goal elicitation by user ob-
servation. In A. Hotho and G. Stumme, editors, Proceedings of the LLWA 2003,
pages 224–228, Karlsruhe, oct 2003. AIFB Karlsruhe, GI.

12. Roza Shkundina and Sven Schwarz. A similarity measure for task contexts. In
Proceedings of the Workshop Similarities - Processes - Workflows in conjunction
with the 6th International Conference on Case-Based Reasoning, 2005.

13. Craig Tashman. Windowscape: a task oriented window manager. In UIST ’06:
Proceedings of the 19th annual ACM symposium on User interface software and
technology, pages 77–80, New York, NY, USA, 2006. ACM.

74 WS MRC - HCP-2008 - Third International Conference on Human Centered Processes


