

MRC2008 Workshop

Reasoning Over Spatial Relations for Context-Aware Distributed User Interfaces

Petr Aksenov Expertise Centre for Digital Media Hasselt University Belgium

09 June 2008

Distributed UI of an image viewer application

Distributed UI of an image viewer application

Redistribution of the UI

Redistribution of the UI

Our Approach

- Utilise spatial relations
- Predict system's behaviour
- Device availability
- Device importance
- Description logic
 Fuzzy logic
 Probabilistic logic

Spatial Model

Interactive system: Devices Tasks Presentation Users

Spatial Model

Spatial Model

But how to represent this type of information?

Graph of Spatial Relations

Graph-like representation of the environment and spatial relations

nodes – interacting resources

edges – spatial relationships

Graph of Spatial Relations

Graph-like representation of the environment and spatial relations

nodes – interacting resources

edges – spatial relationships

How can we see "spatial" differences between interacting resources?

Device Availability Function

Device Availability Function

 t_4 – predicted time when the device is expected to disappear

Device Availability Function distance to a critical reference point KNOWN But are the same devices really the same? PREDICTED time

t₄ – predicted time when the device is expected to disappear

Device Importance

Introduced to determine two threshold values on the plot of the device availability function

T_search – when to start looking for a UI redistribution

when to begin the calculated UI redistribution

The model is set up and relationships and dependencies are defined.

How can we use them?

Reasoning

Ontological reasoning

Dealing with uncertainty

of what the availability function shows

Fuzzy Logic

Dealing with uncertainty

of what the availability function shows

Dealing with uncertainty

Probabilistic Reasoning

of what the availability function shows

Ongoing activities

Ontology

Modelling aspects

Existing ontological models analysed

Valuable bits from each model borrowed

Supportive ideas and guidelines listed for reference

Practical aspects

Protégé tool will be used

RacerPro reasoning engine will be involved

+

ReWiRe, tool for designing UIs in ambient intelligent environments [Vanderhulst et al., IE2008], to appear

Ongoing activities

UNDO problem

How to perform an UNDO operation when the system eventually remains the same?

(e.g., the user decides not to leave right in the doorway)

- Handling side effects (not known at the time of calculations)
- Handling nested (dependent) transformations
- Recovering affected relations
- Handling UNDO during the continuous process

[Edwards et al., UIST2000] "A temporal model for Multi-Level Undo and Redo" [Hernández, COSIT'93] "Maintaining Qualitative Spatial Knowledge" Others?

Future Work

Device Importance

DI = F
$$(x_1, x_2, x_3, x_4, \dots, x_{n-1}, x_n)$$
, where each x_i is a piece of context
 $y_1 = g_1(x_1, x_2, \dots, x_j)$
 $y_2 = g_2(x_{j+1}, x_{j+2}, \dots, x_p)$
 \dots
 $y_k = g_k(x_{q+1}, x_{q+2}, \dots, x_n)$
principal component analysis
clustering algorithms
etc.?

DI= G ($y_{1}, y_{2}, ..., y_{k-1}, y_{k}$), where k<<n

Future Work

Device Availability Function

Elaborating the most important spatial factors for measuring the availability of a device in the environment

- Relevant distances
- Device orientation

Questions & Discussion

IBBT

nartner ir

Ontology guidelines

Extract from the shortlist and guidelines for creating ontology

- Core-Extension (Upper-Specific) approach
- Oriented towards distributed environment
- Relative positioning/coordinates and orientation
- Context repository for relatively small areas
- Switching partial ontologies on/off
- Direct/Indirect relations (sensed, defined/aggregated, deduced)
- Static situations/Related to actions
- Comparison of different characteristics (diff. scales)
- Involve time into the system

Comments and/or suggestions are most welcome